Collins

About this book

This Study Book uses repeated practice throughout. There are five different opportunities for children to practise each topic:

Study

Clear and accessible explanations with quick tests to check that children can recall the key facts.

Quick Test

1. Convert $\frac{35}{100}$ to a decimal.
2. Round 3.61 to one decimal place.
3. Order these decimals from smallest to largest: $\begin{array}{llll}8.43 & 8.4 & 8.57 & 8.55\end{array}$

Practice Questions

End-of-topic practice questions to test and reinforce understanding. The questions are split into three levels of increasing difficulty - Challenge 1, Challenge 2 and Challenge 3 - to aid progress.

Review Questions

These topic-based questions appear later in the book, allowing children to revisit the topic and test how well they have remembered the information.

Mixed Questions

These pages feature questions for all the different topics to make sure that children can tackle questions without being told which topic they relate to.

Test on the Go

Visit our website collins.co.uk/collinsKS2practice and print off a set of free flashcards. These pocket-sized cards feature questions and answers to test children on the key facts anytime and anywhere!

A symbol is used in the book to highlight questions that test problem-solving skills: $\overline{P S}$

Author: Frances Naismith

Contents

Number - Number and Place Value
Place Value 4
Negative Numbers 6
Rounding 8
Roman Numerals 10
Practice Questions 11
Number - Addition and Subtraction
Number Facts for Mental Calculations 12
More Mental Addition and Subtraction 14
Written Addition 16
Written Subtraction 18
Practice Questions 20
Review Questions (Number - Number and Place Value) 21
Number - Multiplication and Division
All Kinds of Numbers 22
Prime, Square and Cube Numbers 24
Multiplying and Dividing 26
Written Multiplication 28
Short and Long Division 30
Practice Questions 32
Review Questions (Number - Addition and Subtraction) 33
Number - Fractions (Including Decimals and Percentages)
Fractions 34
Adding, Subtracting, Multiplying and Dividing Fractions 36
Decimal Fractions 38
Improper Fractions and Mixed Numbers 40
Percentages 42
Practice Questions 44
Review Questions (Number - Multiplication and Division) 45
Measurement
Units of Measurement 46
Perimeter and Area 48
Area, Volume and Money 50
Time 52
Practice Questions 54
Review Questions (Number - Fractions (Including Decimals and Percentages)) 55
Geometry - Properties of Shapes
Angles, Lines and Circles 56
2-D Shapes 58
3-D Shapes and Nets 60
Symmetry 62
Practice Questions 64
Review Questions (Measurement) 65
Geometry - Position and Direction
Plotting Points 66
Translation 68
Reflection 70
Missing Coordinates 72
Practice Questions 74
Review Questions (Geometry - Properties of Shapes) 75
Statistics
All Types of Charts 76
Timetables and Calculating the Mean 78
Practice Questions 80
Review Questions (Geometry - Position and Direction) 81
Ratio and Proportion
Ratio and Proportion 82
Practice Questions 84
Review Questions (Statistics) 85
Algebra
Solving Equations 86
Practice Questions 88
Review Questions (Ratio and Proportion) 89
Review Questions (Algebra) 90
Mixed Questions 91
Answers 102
Glossary 108
Index 112

ACKNOWLEDGEMENTS

The author and publisher are grateful to the copyright holders for permission to use quoted materials and images. Every effort has been made to trace copyright holders and obtain their permission for the use of copyright material. The author and publisher will gladly receive information enabling them to rectify any error or omission in subsequent editions. All facts are correct at time of going to press.
Published by Collins
An imprint of HarperCollinsPublishers
1 London Bridge Street
London SE1 9GF
© HarperCollinsPublishers Limited 2015
ISBN 9780008112769
First published 2015
10987654321
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Collins.
British Library Cataloguing in Publication Data. A CIP record of this book is available from the British Library.

Series Concept and Development: Michelle l'Anson Commissioning and Series Editors: Katie Galloway and Richard Toms
Author: Frances Naismith
Project Manager and Editorial: Natasha Canfer
Cover Design: Sarah Duxbury and Louise Forshaw
Inside Concept Design: Ian Wrigley
Text Design and Layout: Q2A Media
Artwork: Collins and Q2A Media
Printed in China by South China Printing Co Ltd.

Place Value

- Understand the value of each digit in a number up to 10000000 - Know how to order numbers

Place Value of Numbers

You can tell the value of a number by looking at the position of its digits.

Example

Let's look at a seven-digit number:

$$
8734256
$$

It can help to label the number:

In this number:

- There are 8 millions $=8000000$
- There are 7 hundreds of thousands $=700000$ (700 thousand)
- There are 3 tens of thousands $=30000$ (30 thousand)
- There are 4 thousands $=4000$
- There are 2 hundreds $=200$
- There are 5 tens $=50$
- There are 6 units $=6$

Key Point

Knowing the place value of each digit helps you write numbers correctly.

6

In the number six thousand seven hundred and four, you will see that there are no tens.
$67 \underline{0} 4$
You need to put a zero in the tens column as a place holder to make sure all the other digits stay in their correct positions.

Ordering Numbers

You need to look at numbers to compare them and find out which number is greater.

Example

Which is greater? 3715 or 3742
Both numbers have 3 thousands and 7 hundreds so we need to look at the next column - the tens column - to compare them.

This means 3742 is greater than 3715 .

You can write 'greater than' and 'less than' using symbols:
$>$ means 'is greater than'
$<$ means 'is less than'
So 3742 > 3715

Quick Test

1. Write these numbers in figures:
a) Thirty-two thousand nine hundred and forty-six
b) Three hundred and fifty-four thousand six hundred and ninety-three
2. What value does the number 5 have in each of these numbers? Tens, hundreds or ten thousands may be preferred as answers.
a) 456
b) 52341
c) 6513
3. Put these numbers in order from largest to smallest: 43154324425341354335
4. Put > or < between these pairs of numbers to make the statements correct:
a) $2315 \square 4643$
b) $5419 \square 5416$
c) 32556
32546
d) 101322 \qquad

Tip

Imagine your symbol is a crocodile's mouth. The crocodile always eats the largest number:

Key Words

- Digit
- Hundreds
- Tens
- Units
- Place holder
- Greater than (>)
- Less than (<)

Negative Numbers

- Understand negative numbers
- Count forwards and backwards with positive and negative numbers
- Find the next terms in a sequence

What are Negative Numbers?

Numbers below zero are called negative numbers. They have a 'minus' sign in front of them to show that they are negative numbers, for example -14, -465.
If you look at a number line, you can see that negative numbers count from 0 in the opposite direction to positive numbers.

Example

5 is greater than 2.

So, -3 is GREATER than -5 .

SMALLER NUMBERS
GREATER NUMBERS

Counting Using Negative Numbers

You can count back from 10 in 2 s by taking away 2 each time:

If you continue to count back in 2 s , you can go beyond zero into negative numbers.

Study

Counting Sequences

You can count on or back from any number in equal steps. This is called a sequence.
You need to be able to count on or back from any number in jumps of any size.

Example

Counting from 5 in steps of 4: $5,9,13,17 \ldots$
Count back in 100s from 953: 953, 853, 753...

Sometimes you are not given the steps.

Example

What are the next three terms or numbers in this sequence?
4, 10, 16, \qquad
First you need to work out the jump between each number in our sequence.

You can find the next terms by adding 6 each time.

To jump from 4 to 10, you add 6. To jump from 10 to 16, you add 6 .
adding 6 each time.

Tip

Always check your arithmetic carefully when counting on and back - it's easy to make mistakes!

Key Words

- Negative number
- Positive number
- Sequence
- Term

Rounding

- Round numbers to the nearest 10, 100, 1000
- Round numbers to the nearest 10000 or 100000

Rounding Numbers

Rounding numbers makes them easier to work with and can help you to estimate answers to calculations.

Example

To round 32 to the nearest 10, you have a choice of rounding to 30 or 40 :

Key Point

When you round numbers, you are asked to round them 'to the nearest...' 10, 100, 1000, etc.

When you look at a number line, you can see that 32 is nearer to 30 than 40 . So you round 32 down to 30 .

The key for rounding to the nearest 10 is the units. If the units are less than 5 , you round down. If the units are 5 or above, you round up.

Example

Round 365 to the nearest 100.

Tip

You could sketch a number line to help you. On a number line you would see that 365 is nearer 400 than 300.

The key for rounding to the nearest 100 is the tens column. If the tens digit is less than 5, round down. If the tens digit is 5 or above, round up.

The tens digit in 365 is a 6 , so you round up to 400. So 365 rounded to the nearest 100 is 400 .

To round to the nearest 1000, you need to look at the hundreds column. If the hundreds digit is 5 or above, round up. If the hundreds digit is below 5 , round down.

Example

Round 4765 to the nearest 1000.

Rounding to the Nearest 10000 or 100000

To round to the nearest 10000, look at the thousands digit. If it is 5 or above, round up. If it is below 5 , round down.

Example

$2 \underline{3} 725$ to the nearest 10000 would round down to 20000 because the thousands digit is a 3 .

To round to the nearest 100000, you look at the tens of thousands digit. If it is 5 or above, round up. If it is below
 5, round down.

Example

$5 \underline{8} 3725$ to the nearest 100000 would round up to 600000 because the tens of thousands digit is an 8 .

Quick Test

1. Round 64318 to the nearest:
a) 10
b) 100
c) 1000
d) 100000

Key Words

- Round down
- Round up

Roman Numerals

- Read and recognise Roman numerals

Roman Numerals

The Romans used some of the letters from the Latin alphabet (I, V, X, L, C, D and M) to represent numbers:

Letter	I	V	X	L	C	D	M
Value	1	5	10	50	100	500	1000

Example

- $5=\mathrm{V}$, so $4=\mathrm{IV}$ (one less than 5) and $6=\mathrm{VI}$ (one more than 5)
- $10=\mathrm{X}$, so $9=\mathrm{IX}$ (one less than 10) and $11=\mathrm{XI}$ (one more than 10)
- X can be placed before L to make $40(\mathrm{XL})$ and before C to make 90 (XC).
- C can be placed before D to make 400 (CD) and before M to make 900 (CM).

Recording Years in Roman Numerals

The Romans were one of the first civilisations to use calendars, so they recorded the years using their number system.

Example

2015 would be recorded as MMXV:

1000	1000	10	5
M	M	X	V

Quick Test

1. Write these Roman numerals as numbers:
a) $X X$ III
b) XLVI
c) CCXCIII
2. What years do these Roman numerals represent?
a) MDCLXVI
b) MLXVI
c) MCMXIV

Key Point

By placing letters before or after other letters, the Roman system could make any number.

1	I
2	II
3	III
4	IV
5	V
6	VI
7	VII
8	VIII
9	IX
10	X

11	XI
12	XII
13	XIII
14	XIV
15	XV
16	XVI
17	XVII
18	XVIII
19	XIX
20	XX

Key Point

The Romans did not have a symbol for zero - they just left it out!

Key Words

- Latin alphabet
- Symbol

1 Write this number in figures:
forty-six thousand two hundred and twenty-eight \qquad
2 Order these numbers from smallest to largest:

3 Counting back in 5 s , what are the next three terms in this sequence?
$14 \quad 9 \quad 4$
4 Round 3426 to the nearest:
a) 10 \qquad b) 100

Challenge 2

1 Which number is closest to 500 ?

$$
\begin{array}{lllll}
548 & 515 & 489 & 5050 & 450
\end{array}
$$

PS 2 Here are three digit cards. Write all the three-digit numbers greater than 600 that can be made using these cards:

3 What year do these numerals represent? MCMXLV \qquad

Challenge 3

1 What are the next three terms of this sequence?
$17 \quad 25 \frac{1}{2} \quad 34$
2 Anne Boleyn was executed in 1536.
Write this date in Roman numerals.
PS 3 Look at this sequence: $7 \quad 12 \quad 17 \ldots$
Does 96 appear in this sequence? How do you know?

4 Round 345637 to the nearest:
a) 10
b) 100
c) 10000
d) 100000
\qquad

Number Facts for Mental Calculations

- Know number bonds to 100
 - Learn tricks for adding and subtracting

Number Bonds

You need to know your number bonds to 10, 20 and even 100, so that you can find out the missing bond.

Example

$32+$? $=100$
To help find the other half of the bond, look at the units first.
$2+?=10 \quad 2+8=10 \lessdot$ What number bond to 10 goes with $2 ?$
$32+8=40 \longleftarrow$ Add that on to the number.
Now let's look at the tens.

$$
\begin{array}{lrl}
40+? ~ & 400 & 40+60
\end{array} \quad 100<\begin{aligned}
& \text { What number } \\
& \text { bond to 100 } \\
& \text { goes with 40? }
\end{aligned}
$$

Tricks for Adding and Subtracting

Sometimes you can use tricks to make your calculations easier. This is called calculating and adjusting.

Example I

$23+9$
If you think of the 9 as a $10(9+1)$, it's easier to add:
$23+10=33$
But remember you added 10 instead of 9 , so you must subtract 1 from the answer:
$33-1=32$
$23+9=32$

Tip

Make your adjustment at the end of your calculation.

Study

Example 2

$23+11$
In the same way, you can think of 11 as a 10 (11-1):
$23+10=33$
But remember you added 10 instead of 11 , so you must add 1 more to the answer:
$33+1=34 \quad 23+11=34$

This trick works for subtraction too!

Example

42-9
Think of the 9 as a 10 :
$42-10=32$
But remember you took away 10 instead of 9, so you must add 1 to the answer:
$32+1=33$
$42-9=33$

You can use this trick to add bigger numbers.

Example

$50+199$
Add 1 to make 199 into $200(199+1)$.
Calculate: $50+200=250$
Then adjust: $250-1=249$
$50+199=249$

Quick Test

1. Find the missing numbers:
a) $26+$? $=100$
b) $78+?=100$
c) $465+?=500$
2. Use tricks of adding and subtracting to work out these calculations:
a) $68+11$
b) $47-9$
c) $397+50$
d) $296-30$

Key Point

Always check that you have adjusted correctly; do you need to add or subtract?

More Mental Aodition and Subtraction

- Add and subtract multiples of 10
- Estimate by rounding
- Add and subtract numbers mentally

Adding and Subtracting Multiples of 10

You can simplify addition calculations involving multiples of 10.
Example
$70+150$

$7+15$
You can easily calculate $7+15=22$
So $70+150=220 \lessdot$ Put the 0 back on to each side.

This method of simplifying works for subtraction too!
140-90
$14-9=5$
So $140-90=50$

Estimating Answers

It helps to estimate what the answer might be before you start calculating. Then you can check your answer against your estimate to see if it's correct. You estimate by rounding the numbers.

Key Point

Round numbers up or down to find an estimate.

Example

28 rounded to the nearest 10 is 30 .
$30+40=70$

> 41 rounded to the nearest 10 is 40 .

Your estimate is 70 .

Then calculate mentally: $20+8+40+1=69$ and check it against the estimate.
The answer is close to the estimate, so you know you must be correct!

Mental Addition

To add numbers mentally (in your head), it can help to partition them into hundreds, tens and units.

HTU

Key Point

Remember, addition can be done in any order.

You can put the numbers into an order which makes them easier to add up:

$$
\begin{aligned}
& 200+100+60+40+7+5 \\
& 300+100+12=412
\end{aligned}
$$

Mental Subtraction

You can use partitioning to subtract numbers too.

$$
\begin{aligned}
& \text { Example } \\
& 68-43 \\
& =60+8-40-3 \\
& =60-40+8-3 \\
& =20+5=25 \\
& 68-43=25
\end{aligned}
$$

Quick Test

Use your mental maths skills to work out these.
Estimate your answers first.

1. Henry had 18 pens and his sister Ava had 23. How many pens did they have altogether?
2. a) $69+99$
b) $302-50$
c) $198+45$

Tip

When you are adding or subtracting bigger numbers mentally, partitioning the numbers into hundreds, tens and units can make it easier to add them up.
Partition each side
into tens and units.

Key Words

- Multiple of 10
- Estimate
- Rounding
- Partition

Written Addition

```
- Add numbers by writing them down
- Add decimals
```


Addition Using the Column Method

If you are given a sum and the numbers are too big or there are too many numbers to add mentally, then you can use a written method.

You can use the column method to add numbers.

Example I

Jo has collected 243 football cards and Zara has collected 142 cards. How many cards do the children have altogether?

1. Start with the least significant digit so add the units first.

243
+142
5

2. Then add the tens.

243
+142
85

3. Finally, add the hundreds.

$$
\begin{array}{r}
243 \\
+142 \\
\hline 385
\end{array}
$$

Study

Example 2
Ahmed has 346 stamps in his collection. His friend Sam has 267 stamps in his collection. How many stamps do the boys have in total? Add the units: $6+7=13$
 Record the 3 in the units column and
carry the 10 as a 1 in the tens column:

Then add the tens: $4+6+1=11$
Record the 11 as 1 in the tens column $\begin{array}{r}346 \\ +2617 \\ \hline 13\end{array}$ and carry the 10 as a 1 into the hundreds column.

Adding Decimals

Some numbers contain a decimal point, for example 13.51 You can use the column method to add decimals.

Example

Saira has saved $£ 34.62$ in pocket money. Her auntie gives her another $£ 23.65$. How much money does Saira have now?

1. First bring the decimal point down and put it in the answer line directly below the decimal points that are already there.
2. Then add the digits using the column method.

.
$£ 34.62$
$+£ 231.65$
$£ 58.27$

$$
\begin{array}{r}
£ 34.62 \\
+\quad £ 23.65 \\
\hline
\end{array}
$$

Key Point

Sums like this one are more tricky as you have to carry a number to another column. Make sure you carry the number to the next column.

Tip

Don't worry about the decimal point: it's already in your answer!

Quick Test

1. Work out these addition calculations by writing them down:
a) $345+62$
b) $98+1090$
2. Asif has $£ 32.50$ in his money box. Chloe has $£ 14.55$. How much money do Asif and Chloe have altogether?

Written Subtraction

- Subtract numbers by writing them down
 - Subtract decimals

Subtraction Using the Column Method

You can subtract bigger numbers using the column method. You need to make sure that the digits are all written in the correct column.
Sometimes it helps to put the place value labels above your calculation.
Start with the least significant digit (in this calculation the units).

Example

1. Subtract the units: $5-2=3$

$$
\begin{array}{r}
4865 \\
-1342 \\
\hline
\end{array}
$$

2. Then subtract the tens: $6-4=2$

$$
\begin{array}{r}
4865 \\
-1342 \\
\hline 233
\end{array}
$$

3. Then subtract the hundreds: $8-3=5$

4865
-1342
523

4. Then, finally, the thousands: $4-1=3$

4865
-1342
3523

Some calculations can be more tricky:

Example

1. When you look at the units you

5273 can't subtract 6 from 3, so you go to -1346 the tens column and exchange the 7 for a 6 and a 1.
2. Now you have $13-6$ which you can subtract.

$$
\begin{array}{r}
527^{6} 3 \\
-1346 \\
\hline
\end{array}
$$

Tip

It might be helpful to label each column in your calculation with its place value.
3. You then subtract $6-4$ in the tens column.

$$
\begin{array}{r}
5273 \\
-1346 \\
\hline 27
\end{array}
$$

4. When you look at the hundreds column, you can't subtract 3 from 2 so you go to the thousands column and -1346
exchange the 5 for a 4 and a 1. This means you can subtract $12-3=9$.
5. Then you can finish by subtracting $4-1$ in the thousands column.

$$
\begin{array}{r}
4161 \\
5273 \\
-1346 \\
\hline 3927
\end{array}
$$

Subtracting Decimals

You can subtract decimals using the same method you used for adding decimals.

Example

You can't subtract 7 from 3 so you need to exchange.

Tip

Remember to drop the decimal point into your answer before you start.

$$
\begin{array}{r}
4^{6} \pi^{1} .3 \\
-\quad 24.7 \\
\hline 22.6
\end{array}
$$

Quick Test

1. Try these calculations. Remember to estimate your answer first!
a) $3782-3131$
b) $4126-3452$
c) $16.83-12.96$

Key Words

- Place value
- Exchange

Practice Questions

Challenge I

1 Find the number bonds to 100 for these numbers:
a) 45 \qquad b) 76 \qquad
c) 17
d) 63 \qquad

2 Work out $70+40$ mentally. \qquad
3 Work these out using a written method.
a) $3417+4752$
b) $3415-1263$

Challenge 2

1 Find the number bonds to 1000 for these numbers:
a) 465
b) 736 \qquad
c) 257
d) 666 \qquad

2 Work out 302-40 mentally. \qquad
3 Work these out using a written method.
a) $7184-3276$
b) $24.72+15.16$

Challenge 3

$149+162$
Using rounding, which estimate is closest? Tick the correct answer. $200 \square 220 \square 210 \square$
2 Work out $597+301$ mentally. \qquad
3 Work these out using a written method.
a) $£ 34.67+£ 26.99$
b) $16.85-11.47$

1 What value does the digit 5 have in these numbers?
a) 3567 \qquad
b) 315
c) 543.2 \qquad
2 Put these numbers in order from the smallest to the largest: $\begin{array}{lllll}314 & 413 & 441 & 341 & 334\end{array}$

3 Counting back in 100s, what are the next three terms?
515 \qquad
\qquad
4 Round these numbers to the nearest 10:
a) 64
b) 302
c) 1278
\qquad
5 Round these numbers to the nearest 100:
a) 365
b) 1193
c) 202 \qquad

6 Write the next three numbers in the sequence:
1721.526 \qquad
\qquad
7 Write the next three numbers in the sequence:
7 1-5 \qquad
\qquad
\qquad
8 Round these numbers to the nearest 10000:
a) 46893
b) 23267
c) 146623
\qquad
9 Which is nearer to 500: 478 or 518 ? Give a reason for your answer.
\qquad
10 Look at the sequence:
14, 20, $26 \ldots . .$.
Is 53 in this sequence? Give a reason for your answer.

11 Write 27 in Roman numerals. \qquad
12 What years do these Roman numerals represent?
a) $M C M X X X V I$ \qquad b) $M M X V$ III \qquad

All Kinds of Numbers

- Know the times tables and related division facts - Learn about factors, multiples and products

Times Tables and Division Facts

You need to know all of the times tables up to 12×12 :

x	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

You can use your times table knowledge to find division facts.

Example

$9 \times 8=72$ and $8 \times 9=72$, so:
$72 \div 8=9$ and $72 \div 9=8$

Factors, Products and Multiples

Factors are numbers that can be multiplied together to give another number.

Tip

If you learn these times tables, you will find it easier and quicker to do calculations.

Example

3 and 10 are factors of $30(3 \times 10=30)$
6 and 4 are factors of $24(6 \times 4=24)$

Products are the answers given by multiplying factors.

Example

6 is the product of $2 \times 3 \leftarrow 2$ and 3 are factors
50 is the product of 5×10
5 and 10 are factors

Multiples are the answers you get when you multiply a given number by any other number.

Example

Multiples of 5 are: $5,10,15,20,25 \ldots$

Common Factors and Common Multiples

Common factors are factors that are common to more than one product.

Example

Factors of 12 are: 1, 2, 3, 4, 6, and 12
Factors of 8 are: 1, 2, 4 and 8
So the common factors of 12 and 8 are: 1, 2 and 4 .

Common multiples are multiples that are common to two or more numbers.

Example

The multiples of 3 are: $3,6,9,12,15,18 \ldots$
The multiples of 2 are: $2,4,6,8,10,12,14,16,18 \ldots$
So common multiples of 2 and 3 include: 6,12 and 18 .

Quick Test

1. Write the two division facts that are related to $8 \times 11=88$
2. List all the factors of 30 .
3. What is the product of 2,3 and 4 ?
4. List the common factors of 16 and 20.

Key Point

Multiples are the answers to our times tables.

Prime, Square and Cube Numbers

\author{

- Recognise prime numbers
 - Recognise prime factors
 - Understand square numbers
 - Understand cube numbers
}

Prime Numbers

A prime number is a number than can only be divided by 1 and itself (it only has two factors).

- 1 is not a prime number because it can only be divided by 1 (it only has one factor).
- 2 is the only even prime number (because all other even numbers can be divided by 2).

Key Point

2 is the only even prime number.

- Other prime numbers are $3,5,7,11,17 \ldots$

Prime Factors

A prime factor is a factor that is also a prime number.
3 and 5 are the prime factors of 15 because both 3 and 5 are prime numbers.

Example

To find the prime factors of 36 , you first need to look at the factors of 36 :

3 and 12 are factors of 36 . $(3 \times 12=36)$
3 is a prime number but 12 is not, so you need to break 12 down into its factors:
3 and 4 are factors of 12, so now you have:
3, 3 and 4.
4 is not a prime number so again you need to break 4 down into its factors:

2 and 2 are factors of 4 . So now you have:
$3 \times 3 \times 2 \times 2=36$
So $3,3,2$ and 2 are the prime factors of 36 .

Square Numbers

A square number is the answer you get when you multiply any number by itself. The symbol used to show that a number is squared is ${ }^{2}$ (so, 4^{2} means 4 squared).

Example

Cube Numbers

A cube number is the answer you get when you multiply any number by itself and by itself again. The symbol used to show that a number is cubed is ${ }^{3}$ (so, 5^{3} means 5 cubed).

Example

$2 \times 2 \times 2=2$ cubed $=2^{3}=8 \leftarrow 8$ is a cube number.
$3 \times 3 \times 3=3$ cubed $=3^{3}=27 \leftarrow 27$ is a cube number.

Order of Operations

Calculations should be carried out using this order of operations:
Brackets, Indices or Orders, Division, Multiplication, Addition, Subtraction

Key Point

The little '2' means squared and the little ' 3 ' means cubed.

Key Point

Indices or orders include square or cube numbers and square roots.

Example	Work out the brackets first.
$(3+6) \times 2^{2}+21 \div(8-5)-5=9 \times 2^{2}+21 \div 3-5^{2}$	Work out the square number next.
$=9 \times 4+21 \div 3-5$	
$=36+7-5=38$	Multiply and divide (from left to right), then add and subtract (from left to right)

Quick Test

1. What is 3 squared?
2. What is 4 cubed?
3. Find the prime factors of 14.
4. Find a prime number greater than 20 but less than 30 .

Key Words

- Prime number
- Prime factor
- Square number
- Cube number

Multiplying and Dividing

- Multiply and divide by 10, 100 and 1000
- Carry out mental multiplication
- Multiply and divide by 0 or 1

Multiplying and Dividing by 10, 100 and 1000

When you multiply or divide by 10 , the digits don't change; they just change position.

Example

$\begin{array}{rlll}462.35 & \times 10 & \\ H & \top & U . \frac{1}{10} \frac{1}{100} \\ 4 & 6 & 2.3 & 5\end{array}$
$\begin{array}{llll}4 & 6 & 2 & 3.5\end{array}$

You need to put in a zero as a place holder.

Because you are multiplying, the answer is bigger than the starting number.

- Each time you multiply by 10 , the digits will move one place to the left.
- If you multiply by $100(10 \times 10)$, the digits will move two places to the left.
- If you multiply by $1000(10 \times 10 \times 10)$, the digits will move three places to the left.

Because you are dividing, the answer is smaller than the starting number.

- Each time you divide by 10 , the digits will move one place to the right.

Tip

Count the zeros in the number you are multiplying or dividing by, then move your digits that many places either to the left (x) or the right (\div).

Study

- If you divide by $100(10 \times 10)$, the digits will move two places to the right.
- If you divide by $1000(10 \times 10 \times 10)$, the digits will move three places to the right.

Mental Multiplication

You can decompose numbers to help multiply them.

Example

How can you solve 8×15 ?
$8 \times 15=8 \times 5 \times 3$ because $5 \times 3=15$

$$
\begin{aligned}
& =40 \times 3 \\
& =120
\end{aligned}
$$

You can also rearrange numbers to make them easier to multiply.

Example

Solve $6 \times 8 \times 5$
$=6 \times 5 \times 8$
$=30 \times 8$
$=240$

Multiplying and Dividing by 0 and 1

If you multiply any number by 0 , the answer is always 0 .
If you multiply or divide any number by 1 , the answer is always the number itself.

Quick Test

1. 34.62×1000
2. $1753 \div 100$
3. 8×25

Key Point

Remember, multiplication can be done in any order: $3 \times 2=6$ and $2 \times 3=6$

Tip

To multiply by 20, multiply by 10, then double the answer.

To multiply by 5 , multiply by 10, then halve the answer.

To divide by 20, divide by 10, then halve the answer.

To divide by 5 , divide by 10, then double the answer.

Key Word

- Decompose

Written Multiplication

- Multiply using grids
 - Use long multiplication

Grid Multiplication

You can use a grid to work out a multiplication sum.

Example

How can you calculate 24×37 ?

1. Partition each number and write it on a grid.
2. Calculate each answer and write it in the correct space on the grid:

3. Add up all the answers to get a total:
$600+120+140+28=888$
So, $24 \times 37=888$

Sometimes there might be three or more digits to multiply.

Example

How can you calculate 234×5 ?

1. Treat this the same way: partition each number and write it on the grid.

\times	200	30	4
5	1000	150	20

2. Add up the answers to get a total:
$1000+150+20=1170$
So, $234 \times 5=1170$

Tip

An easy way to multiply 20×30 is to think of it as $2 \times 10 \times 3 \times 10$ and then rearrange it to make it easier: $2 \times 3 \times 10 \times 10=600$

Tip

200×5
$=2 \times 10 \times 10 \times 5$
$=2 \times 5 \times 10 \times 10$
$=1000$

Study

Long Multiplication

Another method for working out multiplication by writing it down is called long multiplication.

Example

How can you calculate 38×26 ?

1. Start by multiplying the units by the units:

38
$\times \quad 26$
8

2. Then, multiply the tens by the units:

38
$\times \quad 26$
228

3. Put a zero in the row below as a place holder.
Multiply the tens by the units:
$2 \times 8=16$. Record the 6 and carry the 1 into the next column. Last, multiply the tens by the tens:
$2 \times 3=6+1$ (that was carried) $=7$
4. You then use column addition to find

38
$\times \quad 246$
228
760

Tip

It can help you to put a zero in as a place holder. This will prevent you getting digits in the wrong columns.

Key Word

- Carry

Short and Long Division

\author{

- Divide by single-digit numbers
 - Divide by double-digit numbers
}

Dividing by Single-Digit Numbers

Short division is sometimes called the 'bus stop' method. You normally use this when you have a single-digit divisor.

Example

Calculate $78 \div 5$

1. Divide the most significant digit (in this case the tens digit). 7 divided by $5=1 \mathrm{r} 2$.
Record the 1 above the line and carry the 2 to the next column.
2. Divide 28 (the 2 that was carried has become a ten) by $5=5$ r3.
Record the 5 above the line and leave a remainder of 3 .
3. $78 \div 5=15 \mathrm{r} 3$.

You can express the remainder as:

- a remainder

Key Point

The remainder is the amount left over when the number has been divided.

- a fraction
- a decimal

So, in the example above, the answer would be:

- $15 r 3$

- 15.6

Long Division

When a division sum has a double-digit divisor, you may need to use long division.

Example

Calculate $477 \div 15$

1. $477 \div 15$. There are 30 lots of 15 in 477 . Record the 3 in the tens column above the line. $30 \times 15=450$.
 Subtract this from 477 and put the answer below.
2. $27 \div 15$. There is 1 lot of 15 in 27. Record the 1 above the line in the units column. 12 is left over. 12 cannot be divided by 15 so there is a remainder of 12.

3. $477 \div 15=31 \mathrm{r} 12$

To find a decimal answer you need to put a decimal 31.8
$1 5 \longdiv { 4 7 . 0 }$ point on the answer line and bring down a zero to the remainder.
$477 \div 15=31.8$

Quick Test

Work out these calculations using the 'bus stop' method or long division:

1. $112 \div 7$
2. $198 \div 12$ (giving your remainder as a decimal)
3. $272 \div 16$

Key Words

- Divisor
- Most significant digit
- Remainder

Practice Questions

Challenge I

1 What are all the factors of 24 ? \qquad
2 What are the common factors of 32 and 48? \qquad
3 Divide 132 by 5 , giving your answer with a remainder.

4 Work out 124.5×10 mentally. \qquad
5 What is 62? \qquad
6 Find a prime number between 32 and 40. \qquad -

Challenge 2

1 Find three common multiples of 3 and 5 .
2 What is the product of 6,8 and 4 ? \qquad
3 Divide 174 by 12, giving your answer with a fraction.
4 Work out $13.65 \div 100$ mentally. \qquad
5 What is 2^{3} ? \qquad
6 Work out 38×29 using a written method.

Challenge 3

1 Find the prime factors of 30 . \qquad
2 Work out 234×16 using a written method.

3 What is 5^{3} ? \qquad
4 Divide 248 by 16, giving your answer as a decimal.

1 Find the number bonds to 100 for:
a)
26
b) 17 \qquad
c)

2 Work out $599+64$ mentally. \qquad
3 Work out 702-35 mentally. \qquad
4 Find the number bonds to 1000 for:
a) 376
b) 745
c)

5 Work out 70 + 180 mentally. \qquad
6 Work out 230-90 mentally. \qquad
$7157+$ \qquad $=190$
8 Which estimate is nearest for $68+71$? Tick the correct answer.
$240 \square$
140

$130 \square$

9 Work out $2371+3268$ using a written method.

PS 10 Jo spends $£ 23.54$ and Saira spends $£ 12.56$.
How much do the girls spend altogether?

11 Work out 1984-1167 using a written method.

PS 12 I earned $£ 34.82$ from helping at home.
I spent $£ 15.45$ on a new bag.
How much money do I have left? \qquad
PS 13 Colleen spends $£ 23.14$ on clothes and $£ 5.45$ on a new pencil case.
How much change will she get from $£ 50$? \qquad

Fractions

- Understand simple fractions
- Find fractions of amounts
- Simplify fractions
- Understand equivalent fractions
- Order fractions

Simple Fractions

A fraction is a part of a whole. The number at the bottom tells you how many parts are in the whole. This is called the denominator. The number at the top tells you how many parts of the whole you have. This is called the numerator.

Example

$\frac{5}{8}$ means that something is divided into eight parts and you have five of these eight parts.

Finding Fractions of Amounts

$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{8}$

To find a fraction of an amount, divide the amount by the denominator and multiply by the numerator.

Simplifying Fractions

You can simplify fractions to make them easier to work with and to find equivalent fractions.
You simplify by dividing the numerator and the denominator by the same number.

$$
\begin{aligned}
& \text { Example } \\
& \frac{5}{15} \text { and } \frac{1}{3} \text { are equivalent fractions. }
\end{aligned}
$$

Comparing and Ordering Fractions

It is easy to order fractions with the same denominator.
The fraction with the lowest numerator will be the smallest.

Example

Put these three fractions in order:
$\frac{5}{8} \quad \frac{1}{8} \quad \frac{3}{8} \longrightarrow$ smallest $\quad \frac{1}{8} \quad \frac{3}{8} \quad \frac{5}{8} \quad$ largest

You may be asked to order fractions that have different denominators. To do this you need to find the lowest common denominator for all the fractions.

Example

Put these three fractions in order:

$\frac{3}{4}$	$\frac{5}{8}$	$\frac{1}{2}$

Before you can put these three fractions in order, you need to find the lowest common denominator for 8,4 and 2.

8 is the lowest common denominator.

$\frac{5}{8}$

You must convert all the fractions into eighths because 8 is the lowest common denominator.

Now you can order them:

$\frac{\mathbf{1}}{\mathbf{2}}$	$\frac{5}{8}$	$\frac{\mathbf{3}}{\mathbf{4}}$
smallest		

Quick Test

1. Simplify: a) $\frac{8}{24}$
b) $\frac{10}{15}$
c) $\frac{18}{15}$
2. Which fraction from the list below is equivalent to $\frac{3}{18}$? $\frac{1}{3} \quad \frac{3}{5} \quad \frac{1}{6} \quad \frac{6}{12}$
3. Order these fractions from smallest to largest:
$\frac{2}{12} \quad \frac{3}{6} \quad \frac{1}{4} \quad \frac{2}{3}$

Key Point

The lowest common denominator is the lowest common multiple of two or more numbers.

Number - Fractions (Including Decimals and Percentages)

Aoding, Subtracting, Maltiplying and Dividing Fractions

- Add and subtract fractions with the same denominator
 - Add fractions with different denominators
 - Multiply and divide fractions

Adding and Subtracting Fractions

Adding and subtracting fractions with the same denominator is easy. Simply add or subtract all the numerators.

Example I

$\frac{3}{10}+\frac{5}{10}=\frac{8}{10}$
Example 2
$\frac{6}{8}-\frac{1}{8}=\frac{5}{8}$

Tip

Remember that you are only adding or subtracting the numerators. The denominator stays the same.

Adding Fractions with Different Denominators

If the denominators are different, you need to find the lowest common denominator for both fractions.

Example

$\frac{1}{5}+\frac{2}{3}=$
The lowest common denominator of 5 and 3 is 15 .
You need to convert both fractions to have a denominator of 15 .

Multiplying Fractions

To multiply fractions you multiply both numerators and then multiply both denominators. You can then simplify your answer by dividing the numerator and the denominator by the same number.

Example

Dividing Fractions

You can divide fractions by whole numbers.

Example

Work out $\frac{1}{3} \div 2$
You know that a shape divided into thirds has three parts. If you halve the thirds, you would
 have six parts.
So, $\frac{1}{3} \div 2=\frac{1}{6}$

Quick Test

1. Work out $\frac{2}{12}+\frac{5}{12}+\frac{3}{12}$ and simplify your answer.
2. $\frac{1}{2} \times \frac{1}{4}$
3. $\frac{5}{8}+\frac{3}{4}$
4. $\frac{1}{4} \div 2$

Key Word

- Whole number

Number - Fractions (Including Decimals and Percentages)

Decimal Fractions

- Understand the decimal number line
- Calculate decimals
- Order decimals
- Round decimals

Decimal Number Line

You can divide a $0-1$ number line into 10 equal parts to create a decimal number line. Each part is $\frac{1}{10}$ (one-tenth) or 0.1.
You can divide each $\frac{1}{10}$ into 10 equal parts. Each part is $\frac{1}{100}$ (one-hundredth) or 0.01.

Tip

You can remember that $\frac{1}{10}$ is 0.1 and $\frac{1}{100}$ is 0.01 because 0.1 is 10 backwards and 0.01 is 100 backwards.

Calculating Decimals

To convert a fraction to a decimal, you divide the numerator by the denominator.

Example I

Denominator

Example 2

$\frac{3}{5}$ as a decimal is $3 \div 5=0.6$

Study

Ordering Decimals

You can order decimals in the same way as for whole numbers.

Example

0.347
0.354
0.35
0.356

All the numbers have a 3 in the tenths column, so you need to look at the hundredths column.
0.347
0.354
0.350
0.356

All these numbers have a 5 as the hundredths, so you need to look at the thousandths column to order them. So the correct order is $0.347,0.35,0.354,0.356$

Tip

Before you start ordering your decimals, add some zeros to give them all the same number of digits, e.g. if the other numbers have three decimal places, change 0.35 to 0.350 .

Rounding Decimals

The rules for rounding decimals are the same as those for rounding whole numbers.

Example

To round 3.485 to the nearest whole number, look at the tenths digit. It's a 4 so round down to 3 .

To round 3.485 to one decimal place, look at the hundredths digit. It's an 8 so round up to 3.5 .

To round 3.485 to two decimal places, look at the thousandths digit. It's a 5 so round up to 3.49.

Quick Test

1. Convert $\frac{35}{100}$ to a decimal.
2. Round 3.61 to one decimal place.
3. Order these decimals from smallest to largest:
8.43
8.4
8.57
8.55

Key Word

- Decimal place

Number - Fractions (Including Decimals and Percentages)

Improper Fractions and Mixed Numbers

- Recognise improper fractions
 - Recognise mixed numbers
 - Convert mixed numbers and improper fractions

Improper Fractions

Sometimes when you add fractions you get a 'top heavy' fraction where the numerator is greater than the denominator.

This is an improper fraction and its value is greater than 1.

Example

Tip

Always simplify $\frac{2}{4}$ to $\frac{1}{2}$.

Mixed Numbers

The example above shows that $\frac{6}{4}$ equals $1 \frac{1}{2} .1 \frac{1}{2}$ is a mixed number because it is made up of a whole number and a fraction.

Example

Here you have one apple and half an apple, so you say $1 \frac{1}{2}$ apples.

Converting Improper Fractions and Mixed Numbers

You can convert mixed numbers to improper fractions.

Example

Convert $2 \frac{1}{3}$ to an improper fraction.

Break down the mixed number into parts, in this case 2 wholes and $\frac{1}{3}$.

Add up all the parts by adding the numerators.

So $2 \frac{1}{3}=\frac{7}{3}$

To convert improper fractions to mixed numbers, divide the numerator by the denominator.

Example

Convert $\frac{8}{5}$ to a mixed number.

$$
\begin{aligned}
\frac{8}{5} & =8 \div 5 \\
& =1 \mathrm{r} 3 \\
& =1 \frac{3}{5}
\end{aligned}
$$

Quick Test

1. Convert $2 \frac{1}{4}$ to an improper fraction.
2. Convert $\frac{12}{7}$ to a mixed number.

Key Words

- Improper fraction
- Mixed number

Number - Fractions (Including Decimals and Percentages)

Percentages

- Understand and recognise percentages
 - Find percentages of amounts

Percentages

Percent means 'number of parts per hundred'. For example, 32% means 32 parts of 100 or $\frac{32}{100}$.
Converting fractions to percentages allows you to compare them.
You need to know the decimals and percentages for these fractions:

To find a percentage from a fraction:

- divide the numerator by the denominator
- then multiply the answer by 100.

Example

Achal scored $\frac{48}{64}$ in a recent test.
Peter scored $\frac{63}{90}$ in his test.
Who had the better score?

Achal	Peter
$48 \div 64=0.75$	$63 \div 90=0.70$
$0.75 \times 100=75 \%$	$0.70 \times 100=70 \%$
Achal scored 75%	Peter scored 70%

Achal scored 75% so he had the better score.

Finding Percentages of Amounts

Problems, especially those including money, often ask you to find percentages of amounts.

Example

Find 15% of 64.
It helps to find 10\% first:
$64 \times \frac{10}{100}=6.4$
$10 \%=6.4$
Now that you have found 10\%, you can halve it to find 5\%:
5% of $64=3.2$
Add 10% and 5% together to find 15% :
15% of $64=6.4+3.2$
15% of $64=9.6$

Quick Test

1. Find 80% of 120 .
2. Jan scored $\frac{15}{25}$ in Science and $\frac{18}{40}$ in Maths. Which subject did he do best in?
3. What is $\frac{38}{50}$ as a percentage?
4. What is $\frac{1}{4}$ as a percentage?

Tip

From finding 10\% you can easily calculate other percentages, e.g. $20 \%=6.4 \times 2=$ 12.8 and $60 \%=$ $6.4 \times 6=38.4$

Key Word

- Percent

Practice Questions

Challenge I

1 Find $\frac{1}{4}$ of 32 . \qquad
2 Find 10% of 26 . \qquad
3 Convert these fractions to decimals and percentages. (You can use a calculator.)
$\frac{1}{4}$ \qquad $\frac{25}{75}$ \qquad
\qquad
$4 \quad \frac{5}{8}+\frac{1}{4}=$ \square
5 Convert $\frac{7}{5}$ into a mixed number. \qquad

6 Order these decimals from smallest to largest:
0.65
0.56
0.61
0.6

Challenge 2

1 Find $\frac{3}{4}$ of 48 .
2 Find 30% of 62 . \qquad
3 Convert these fractions to decimals and give your answer to 2 decimal places. (You can use a calculator.)
$\frac{24}{96}$ \qquad
\qquad
$4 \frac{2}{7}+\frac{3}{14}=\square$
\qquad
$\frac{17}{85}$ $\frac{51}{68}$

5 Convert $\frac{18}{8}$ into a mixed number, simplifying the fraction to its simplest form.
\qquad -

PS 1 Peter has three digit cards. He picks up a 5, an 8 and a 2 . What is his answer if he multiplies the numbers on his three cards?

2 List all the prime numbers between 0 and 20.

PS 3 Ciara has 34 boxes of cards. She has 56 cards in each box.
How many cards does she have altogether?

4 What are the prime factors of 42? \qquad
$54^{3}=$ \qquad
6 A teacher shares 213 chocolate bars among 15 children. How many bars does each child get? (Give your remainder as a decimal.)

7 Alan has 112 eggs. He puts 7 in each box. How many boxes does he fill? \qquad
8 Work out 3.547:
a) $\times 10$ \qquad b) $\times 100$
c) $\times 1000$
\qquad
9 Work out 1659:
a) $\div 10$
b) $\div 100$
c) $\div 1000$
\qquad
10 What are the common factors of 15 and 30 ?
\qquad
11 Christie has some wooden bricks 3.8 cm long. If she puts 24 bricks end to end, how long is her line of bricks in cm ?

Units of Measurement

- Be able to use different measures

- Convert measures

- Understand imperial measures

Different Measures and their Units

Different objects are measured in many different units.
Some units (in blue) are not often used these days. They were part of an imperial system. Today we use a metric system for most measures.

Converting Measures

You can use your skills in multiplying and dividing by 10, 100 and 1000 to convert all metric measures.

Example I

Length
There are 10 mm in $1 \mathrm{~cm} ; 100 \mathrm{~cm}$ in 1 m ; and 1000 m in 1 km :

- $3.456 \mathrm{~km}=3456 \mathrm{~m}(\times 1000)$
$6543 \mathrm{~m}=6.543 \mathrm{~km}(\div 1000)$
- $3 \mathrm{~m}=300 \mathrm{~cm}(\times 100)$
$345 \mathrm{~cm}=3.45 \mathrm{~m}(\div 100)$
- $34 \mathrm{~cm}=340 \mathrm{~mm}(\times 10)$
$65 \mathrm{~mm}=6.5 \mathrm{~cm}(\div 10)$

Key Point

When converting lengths:

- multiply or divide by 1000
to convert
between
m and km
- multiply or divide by 100 to convert between cm and m
- multiply or divide by 10 to convert between mm and cm .

Example 2

Mass
$5 \mathrm{~kg}=5000 \mathrm{~g}(\times 1000) \quad 273 \mathrm{~g}=0.273 \mathrm{~kg}(\div 1000)$
Volume/Capacity
$1 \mathrm{l}=1000 \mathrm{ml}(\times 1000) \quad 45 \mathrm{ml}=0.045 \mathrm{I}(\div 1000)$

Imperial Measures

We stopped using most imperial measures many years ago but you may still come across them, e.g. in a recipe book and on road signs. It can help to know roughly what their values are in the metric system.

Length

1 inch = around 2.5 cm

$1 \mathrm{foot}=$ around 30 cm
1 mile = around 1.6 km

Mass

1 ounce (oz) $=$ around 30 g
1 pound $(\mathrm{lb})=$ around 0.5 kg
1 stone $=$ around 6.5 kg

Volume/Capacity

1 pint = around 0.5 litre
1 gallon = around 4.5 litres

Tip

It may help to remember that 30 cm (about 1 foot) is the length of a school ruler.

Key Words

- Imperial
- Metric
- Length
- Mass
- Volume/Capacity

Perimeter and Area

- Calculate the perimeter of regular shapes
 - Calculate the perimeter of a rectangle
 - Calculate the perimeter of composite shapes
 - Calculate the area of a rectangle

Calculating the Perimeter of Regular Shapes

The perimeter of a shape is the distance around the outside of a shape. If you know the length of one side, you can use your knowledge of regular shapes to calculate the perimeter.

Tip

Think of a perimeter fence around an animal enclosure.

Calculating the Perimeter of a Rectangle

The perimeter of this rectangle can be calculated as:

$5+5+2+2=14$ or $2 \times 5+2 \times 2=10+4=14$
It can be shown by a formula:
$P=2 l+2 w \quad$ Perimeter $=2 \times$ the length $+2 \times$ the width

Calculating the Perimeter of Composite Shapes

To calculate the perimeter of a composite shape, you need to calculate the lengths of all the sides.

Study

Example

You can use the information you have to calculate the lengths of the two missing sides:
$12-a=5$, so $a=7 \mathrm{~cm}$
$8-b=3$, so $b=5 \mathrm{~cm}$

Calculating the Area of a Rectangle

The area of a shape is the size of the flat surface it takes up. Area is recorded as square units or units ${ }^{2}$. The simplest way to calculate area is to count squares.

Example

A carpet is 4 m long and 3 m wide.

There are 12 one-metre squares. The area is $12 \mathrm{~m}^{2}$.

You can also calculate the area of a rectangle by multiplying the length by the width.

Tip

For area, think of a carpet covering the floor of a room, or carpet tiles on the floor.

Key Point

Two rectangles can have the same area ($A=l \times w$) but different perimeters, e.g.

The area of the rectangle above can be calculated as $A=4 \times 3=12 \mathrm{~m}^{2}$

Quick Test

1. One side of a regular hexagon measures 5 cm . What is the perimeter of the shape?
2. Calculate the area of a rectangle that is 6 cm long and 4 cm wide.

Key Words

- Perimeter
- Formula
- Composite shape
- Area

Area, Volume and Money

- Calculate the area of other shapes
 - Calculate volume
 - Work with money

Area of Other Shapes

You can use your knowledge of squares and rectangles to calculate the area of other shapes.

Example

To calculate the area of a triangle, you can put two triangles together to make a rectangle as shown opposite.
You can use $A=l \times w$ to calculate the area of the rectangle, then divide by 2 to find the area of the triangle.
Area of triangle $=(5 \times 3) \div 2=7.5 \mathrm{~cm}^{2}$
You can reorganise this parallelogram to make a rectangle.

5 cm

Area of parallelogram $=8 \times 6=48 \mathrm{~cm}^{2}$

Calculating Volume

The volume is the amount of space an object takes up. Volume is measured as units ${ }^{3}$.

Example

Imagine this cuboid is made from 1 cm cubes.
You can calculate the volume by counting the 1 cm cubes. There are $12 \times 1 \mathrm{~cm}$ cubes.

$$
V=12 \mathrm{~cm}^{3}
$$

You can also use the formula:

$1 \mathrm{~cm}^{3}$

Volume $=$ length \times width \times height

$V=l \times w \times h \quad V=2 \times 2 \times 3=12 \mathrm{~cm}^{3}$

Money

Money is either measured in pounds ($£$) or pence (p). There are 100 p in $£ 1$. Amounts of money are written as $£ 00.00$.

- Convert $£$ to p by $\times 100$, so $£ 5.67=567$ p
- Convert p to $£$ by $\div \mathbf{1 0 0}$, so 306 p $=£ 3.06$

To order, add or subtract money convert it all to the same unit, all in $£$ or all in p.

Example I

Order these amounts of money from smallest to largest:
$£ 3.67$ 36p $£ 36.70$ 376p
First, change all the amounts to $£$:
$£ 3.67$ £0.36 £36.70 £3.76
Then order them from smallest to largest:

	$£ 0.36$	$£ 3.67$	$£ 3.76$	$£ 36.70$
smallest	$36 p$	$£ 3.67$	$376 p$	$£ 36.70$ largest

Example 2

Add these amounts of money: $£ 45.55+324$ p

1. First, change all the amounts to $£$:
$£ 45.55+£ 3.24$
2. Then, add the amounts together:
$=£ 48.79$

Quick Test

1. What is the area of this triangle?

2. Calculate the volume of a brick measuring 3 cm long, 5 cm wide and 6 cm high.
3. What is $£ 567.43$ in pence?

Key Point

Always remember to record two decimal places even if you don't have a value, e.g. $£ 3.20$ not $£ 3.2$.

Time

```
- Be able to tell analogue and digital time
- Be able to tell 12- and 24-hour time
- Know weeks, months and years
- Calculate time intervals using number lines
```


Analogue and Digital Time

Clocks with hands are called analogue clocks.
The clock face is split into 12 hours and 60 minutes The minute hand (the longer one) tells you how many minutes past or to the hour it is and the hour hand (the shorter one) tells you what hour it is near.
Digital clocks have no hands. They use digits past the hour. If it was 20 to 9, the digital time would be recorded as 8:40. You use a.m. to show that it's the morning and p.m. to show that it's the afternoon or evening. Any time after 12 midnight is a.m. and any time after 12 noon (midday) is p.m.

12- and 24-Hour Clocks

Because a clock face only has 12 hours on it, you need to use a.m. and p.m. to tell if it is morning or afternoon. 24-hour clocks don't start at 1 o'clock again after lunch. They continue counting up to 24 . 24 -hour time is recorded as four digits with the hours and minutes separated by a colon (:).

Key Point

24-hour clocks don't need to use a.m. and p.m.

Key Point

There is no time recorded as 24:00. After 23:59 it goes to 00:00.

Weeks, Months and Years

There are 60 seconds in one minute and 60 minutes in one hour. There are 24 hours in one day.
There are seven days in a week and 14 days in a fortnight. In a year there are 12 months or 52 weeks or 365 days. Once every four years there is a leap year and there is an extra day (29 February).

Time Problems

You can use number lines to help solve time problems.

Example

Sameera gets on a bus at 3.45 p.m. The journey takes 35 minutes. What time does Sameera get off?
Sameera gets off the bus at 4.20 p.m.

Move 35 minutes along the number line in logical jumps.

Tip

You can learn a saying to remember how many days there are in each month:
30 days has
September,
April, June and November. All the rest have 31, Excepting February alone.
Which only has but 28 days clear And 29 in each leap year.

Sometimes you need to work out the time interval.

Example

Jo puts her cake in the oven at 5.40 p.m. She takes it out at 7.10 p.m. How long was the cake in the oven?

Jo's cake was in the oven for 1 hour and 30 minutes.

Quick Test

1. What is 7.35 p.m. in 24 -hour time?
2. How many minutes are there in three hours?
3. Aiden's birthday is on 4 August. He had his party one week before. What date did he have his party?

Key Words

- Analogue
- Digital
- a.m.
- p.m.
- 24-hour
- Fortnight
- Leap year

Practice Questions

Challenge I

1 Convert:
a) 25 cm to mm
b) 1260 m to km \qquad \square
2 marks

2 Calculate the area and perimeter of this rectangle:

Area $=$ \qquad cm^{2}
Perimeter $=$ \qquad cm

3 Convert 19:45 to 12-hour time. \qquad
PS 4 Add $345 p+£ 2$ and give your answer in $£$. \qquad

Challenge 2

1 Convert:
a) 645 ml to I
b) 4.126 kg to g
\qquad
2 Calculate the area and perimeter of this rectangle:

$$
\begin{aligned}
\text { Area } & =\square \mathrm{cm}^{2} \\
\text { Perimeter } & =\square \mathrm{cm}
\end{aligned}
$$

PS 3 One side of a regular pentagon measures 8 cm .
What is the perimeter of the shape? \qquad cm
PS 4 Chloe came back from a fortnight's holiday on 12 July.
On what date did she go on holiday? \qquad

Challenge 3

PS 1 The perimeter of the rectangle is 29 m . What is the width of the rectangle?

\qquad
2 What is the volume of this cuboid?

\qquad
3 Convert 23467 m to km .
Round your answer to one decimal place. \qquad
4 What is the area of this triangle? \qquad cm^{2}

1 What is $\frac{2}{7}$ of 42? \qquad
2 Express $\frac{24}{40}$ in its simplest form.

3 Which fraction below is equivalent to $\frac{2}{3}$? Tick the correct answer. $\frac{5}{20} \square \quad \frac{5}{16} \square \quad \frac{16}{24} \square \quad \frac{8}{40} \square$
$4 \frac{5}{11}+\frac{3}{11}=\square$
5 What is half of $\frac{1}{8}$?

6 $\frac{1}{6} \times \frac{1}{5}=$
\square

PS 7 Sophia and Jacob were eating pizzas. Sophia ate $\frac{7}{10}$ of her pizza and Jacob ate $\frac{4}{5}$ of his pizza.

Who ate the most? \qquad
8 Order these decimals from largest to smallest:
3.24
2.35
3.2
2.34
3.25

9 Round 23.71 to the nearest:
a) $\frac{1}{10}$
b) whole number \qquad

10 Change $\frac{12}{5}$ into a mixed number. \qquad
11 Change $3 \frac{1}{4}$ into an improper fraction. \square
12 James got 75% in a test. What is 75% as a fraction and a decimal? Fraction: \square Decimal: \qquad
13 Find 80% of 40 . \qquad

Angles, Lines and Circles

- Recognise obtuse, acute and right angles
- Recognise perpendicular and parallel lines
- Measure circles

Obtuse, Acute and Right Angles

Angles are measured in degrees ${ }^{\circ}$. You can measure angles with a protractor.
A right angle measures 90° and is shown as:

If you turn around fully once, you will have turned through 360°. Because there are four right angles in a whole turn, if you turn $\frac{1}{4}$ of a turn you turn 90°.
$A \frac{1}{2}$ turn $=180^{\circ}$.
$A \frac{3}{4}$ turn $=270^{\circ}$.

A turn can be clockwise or anti-clockwise.
Here are some other types of angle:

- Acute angles are less than 90°.
- Obtuse angles are greater than 90° but less than 180°.
- Reflex angles are more than 180° but less than 360°.

- Vertically opposite angles are equal.

So $a=b$ and $c=d$.

Tip

'Vertically' in 'vertically opposite angles' means they share the same corner or 'vertex'.

Key Point

A half turn (180°) is also called an angle on a straight line.

Perpendicular and Parallel Lines

A perpendicular line lies at 90° to another line.

Parallel lines stay the same distance apart and never touch.

Circles

Circles can be described by diameter, radius and circumference:

$d=2 r$ or $r=\frac{1}{2} d$

Quick Test

1. If I turn around $1 \frac{1}{2}$ times, how many degrees have I turned?
2. Which angles are acute? Which angles are obtuse?

d

3. This is line ' x '.

Which line is a) parallel to x ? b) perpendicular to x ? $a<b \mid \quad c \times \quad d$

2-D Shapes

- Know regular and irregular shapes
 - Recognise triangles and quadrilaterals
 - Find missing angles and sides

Regular and Irregular Shapes

Shapes are regular if their sides are the same length. Irregular shapes have sides of different lengths.
All the interior angles of regular shapes are equal.

Regular Shapes	Irregular Shapes
\square	

Triangles and Quadrilaterals

There are three types of triangles:
Equilateral triangles have three equal sides and three equal angles (all 60°).
Isosceles triangles have two equal sides and two equal angles.

Scalene triangles have no equal sides and all their angles are different.
Make sure you know the properties of these
 quadrilaterals (shapes with four sides):

Square

Rhombus

- Diagonally opposite angles equal
- All sides equal length
- Opposite sides parallel

- All angles equal $\left(90^{\circ}\right)$
- Opposite sides equal length
- Opposite sides parallel
\square

- Diagonally opposite angles equal
- Opposite sides equal length
- Opposite sides parallel

Parallelogram

Key Point

Lines of equal length are marked with dashes and parallel lines are marked with arrows.

Tip

Think of a rhombus as a squashed square and a parallelogram as a squashed rectangle.

The interior angles of every triangle always add up to 180° and the interior angles of all quadrilaterals add up to 360°. You can use these known facts to calculate missing angles.

Example I

What does angle a measure?
$94^{\circ}+27^{\circ}+a=180^{\circ}$
$a=180^{\circ}-\left(94^{\circ}+27^{\circ}\right)$
$a=180^{\circ}-121^{\circ}$
$a=59^{\circ}$

Example 2

What are angles x, y and z ?
Opposite angles are equal so $y=110^{\circ}$
All angles add up to 360° so $x=z=70^{\circ}$

You can calculate the total of the interior angles of any regular polygon by dividing it into triangles.

Example

This pentagon has been divided into three triangles.
The angles of a triangle total 180°.
So, you can say that the angles of the
 pentagon $=3 \times 180^{\circ}=540^{\circ}$

Quick Test

1. Calculate the missing angles a and b in this isosceles triangle:

Key Words

- Regular
- Irregular
- Equilateral
- Isosceles
- Scalene
- Quadrilateral
- Parallelogram
- Rhombus
- Trapezium
- Polygon

3-D Shapes and Nets

\author{

- Recognise 3-D shapes
 - Be able to work with nets
}

3-D Shapes

3-D shapes are solid shapes. They are called 3-D because they have three dimensions:

- length
- width
- height.

A 2-D shape only has two dimensions. You need to know which 2-D shapes come together to make up common 3-D shapes.

Example

Cube	$=6 \times$	
Cuboid		$2 \times \square \text { or } 2 \times$
Cylinder	$=1 \times$	$2 \times$
Cone	$=1 \times$	$1 \times \bigcirc$
Square-based pyramid	$\{=4 x$	$1 \times$
Tetrahedron	$=4 x$	
Triangular-based prism	$=2 \times$	$3 \times$

Study

Nets

A net of a 3-D shape is the 2-D shape that appears if the 3 -D shape is opened up.

Example

This map is a net of the world. If you cut around it and stuck it together, it would form a sphere.

Key Point

2-D stands for two-dimensional and 3-D stands for three-dimensional.

You can create nets of common 3-D shapes by putting together 2-D shapes.

Example

This net is made of six squares. It would fold up to make a cube.

This net is made from two squares and four rectangles. It would fold up to make a cuboid.

Tip

You could cut up a cereal box along the edges to see what kind of net it creates.

Quick Test

1. What 2-D shapes and how many of them would come together to make a pentagonal-based prism?
2. What 3-D shape would this net make?

Key Words

-3-D

- Net

Symmetry

- Find lines of symmetry
 - Create a symmetrical shape

Finding Lines of Symmetry

A shape or object is symmetrical if one side is the mirror image of the other.

Example

This plant pot is symmetrical. The dotted line is the line of symmetry. Each side is the mirror image of the other.

Tip

Imagine folding the image along the line. If it is exactly the same on both sides, it is symmetrical.

Shapes have lines of symmetry:

Completing Symmetrical Patterns

To complete a symmetrical pattern, you need to reflect it in the line of symmetry.

Tip

Imagine the line of symmetry is a mirror.

The line of symmetry can be drawn in any direction:

Key Words

- Symmetrical
- Line of symmetry

Quick Test

1. Which image, A or B, is the reflection of this pattern?

2. Draw the line of symmetry on this triangle.

Practice Questions

Challenge I

1 The radius of a circle is 4.5 cm . What is the diameter? \qquad

2 Measure angle x.

\qquad

3 Work out angle b.

\qquad
4 Which shape has only two right angles?
a

\qquad

Challenge 2

1 What shape would this net make?

\qquad $\underbrace{\square}_{1 \text { mark }}$

2 Measure angle x.

3 Work out angle b.

\qquad

Challenge 3

1 Measure angle x.

2 The diameter of a circle is 12.5 cm . What is the radius? \qquad

3 What shape would this net make?

1 What units would you record the width of your exercise book in?
PS 2 Complete this table, filling in the blanks:

$\mathbf{m m}$	$\mathbf{c m}$	\mathbf{m}
35		
	27	
	357	

PS 3 Joshua drank five pints of milk.
Approximately how many litres did he drink? \qquad
4 One side of a regular octagon measures 6.5 cm . What is the perimeter of the shape?
PS 5 Calculate the perimeter of this shape:

\qquad
6 Here is a plan of Charlotte's bedroom. What area of carpet does Charlotte need to buy?

\qquad

PS 7 Syed saved $£ 3.45$ and his friend Claire saved 268 p.
a) How much did they save together?
b) Together they want to buy some Top Trumps cards that cost $£ 7.00$.

How much more money do they need?
f \qquad
\qquad
PS 8 Louis takes his cake out of the oven at 7.20 p.m. It baked for 1 hour and 35 minutes.
At what time did it go into the oven?

Plotting Points

- Plot points in the first quadrant
 - Plot points in four quadrants
 - Plot coordinates on a line
 Plotting Points in the First Quadrant

Coordinates are the location of a point. They are written as (x, y) where the x coordinate is the distance along the x axis and the y coordinate is the distance up the y axis.
The point $(0,0)$ is called the origin. Points are marked with a dot or small cross.

Example

The point $A(3,4)$ is plotted on the grid.

Tip
Remember that the x coordinate comes before the y coordinate because (x, y) is in alphabetical order.

Plotting Points in the Four Quadrants

The grid can be extended past the origin into four quadrants to give negative numbers on the axes.

Points are plotted in the same way as for the first quadrant except that the x and y values may be negative. This is called plotting points in four quadrants.

Example

Coordinates on a Line

Knowing the coordinates of points on a line will help you find missing coordinates.

Example

Look at grid A below. Look at the coordinates of the points already plotted: $(1,3),(2,3),(3,3),(4,3)$.
You will notice that the y coordinate is always 3 . So, if you plot another point on this line, its y coordinate will be 3.
Look at grid B. Look at the coordinates of the points already plotted: $(4,2),(4,3),(4,4),(4,5)$.
You will notice that the x coordinate is always 4 . So, if you plot another point on this line, its x coordinate will be 4 .

Grid A

Grid B

Quick Test

1. What is the horizontal axis called?
2. What are the coordinates of the origin?
3. What are the coordinates of points A, B, C and D ?

Key Words

- x axis
- y axis
- Origin
- Quadrant

Translation

- Translate points
- Translate shapes

Translating Points

You can move points across and up or down a coordinate grid. This is called translation.

When you mark the translated points, you add ' after the letter, for example A', B', C'.

Example

If you move point $A(-10,8) 20$ units right and 7 units up, what will the coordinates of the new point A^{\prime} be?

The new point A^{\prime} has coordinates $(10,15)$.

Study

Translating Shapes

You can translate whole shapes by moving each point in turn.

Example

Translate triangle A 2 squares right and 3 squares up.

By translating each point of the triangle in turn, you can plot the position of the new triangle A^{\prime}.

Quick Test

1. If you move a shape up, down or sideways on a coordinate grid, what is it called?
2. On the grid on page 68 , if you move point $A(-10,8)$ 5 units right and 3 units down, what are the coordinates of the new point A^{\prime} ?

Key Point

The original shape and the translated shape are the same size. The original shape has only changed its position.

Key Word

- Translation

Reflection

- Reflect points and shapes in the x axis
- Reflect points and shapes in the y axis

Reflecting Points and Shapes in the \boldsymbol{x} Axis

You can use the axes of a coordinate grid as lines to reflect shapes. This is called reflection.
A shape can be reflected in the x axis.

Example

Reflect triangle A in the x axis to produce a new triangle A'.

The coordinates of the vertices of the reflected triangle A^{\prime} are $(5,-10),(5,-5),(15,-5)$.

The original shape and the reflected shape are the same

Tip

When reflecting a shape on a grid, imagine that the axis is a mirror line - a bit like symmetry!
 from the x axis as the vertices of the original shape - they are just on the other side of the axis.

Reflecting Points and Shapes in the y Axis

A shape can be reflected in the y axis.
The vertices of the reflected shape are the same distance from the y axis as the vertices of the original shape - again, they are just on the other side of the axis.

Example

Reflect triangle A in the y axis to produce a new triangle A".

The coordinates of the vertices of the reflected triangle $\mathrm{A}^{\prime \prime}$ are $(-5,10),(-5,5),(-15,5)$.

Quick Test

1. If you use the x or y axis as a mirror line, what is the change in position called?
2. On the grid above, reflect triangle $\mathrm{A}^{\prime \prime}$ in the x axis. Give the coordinates of the vertices of the reflected triangle.

Tip

Reflected points can be recorded as $A^{\prime}, B^{\prime}, C^{\prime}$ or $A^{\prime \prime}, B^{\prime \prime}$, $C^{\prime \prime}$, etc. to show that the original shape has changed position.

Study

Key Words

- Reflection
- Vertices

Missing Coordinates

- Be able to find missing coordinates

Finding Missing Coordinates

You can find missing coordinates by using your knowledge of shapes.

Example

Shape $A B C D$ is a parallelogram. What are the coordinates of point D ?

In a parallelogram the opposite sides are parallel and of equal length. So, line BC equals and is parallel to line AD. To get from point B to point C, you go down 15 and along 5 . So to go from point A to point D, you also go down 15 and along 5.
Plot point D at ($-5,-10$).

Key Point

Finding missing coordinates is just like translating points.

Unlabelled Axes

Sometimes the axes are not labelled with numbers and there is no grid. However, it's still possible to work out the missing coordinates.

Example

$A B C D$ is a square. What are the coordinates of point D ?

From your knowledge of the properties of a square and what you know about coordinates in a line, you know that point D will have the same \boldsymbol{x} coordinate as point \mathbf{A} and the same \boldsymbol{y} coordinate as point C .
So the coordinates of point D are $(3,1)$.

Quick Test

1. What are the coordinates of points B and D ?
2. DEFG is a square. What are the coordinates of point E ?

Key Words

- Parallel
- Properties

Practice Questions

Challenge I

1 List the coordinates of A, B and C.

2 On the grid paper on page 111, plot triangle A with vertices (3,1), (4,3), (4,1).
3 Reflect triangle A in question 2 to A^{\prime} in the x axis and list its new coordinates. (\qquad) (\qquad , \qquad) (\qquad , \qquad)
4 What are the coordinates of the origin? (\qquad)

Challenge 2

1 On the grid paper on page 111, plot triangle A with vertices $(2,1),(4,-4),(5,0)$.
2 Translate triangle A, in question 1, 4 units left and 2 units down and list the coordinates of A^{\prime}.
\qquad
\qquad (\qquad (\qquad , \qquad)
$3(2,4),(4,4),(4,2)$ are the coordinates of three vertices of a square. What are the coordinates of the fourth vertex? (\qquad _

Challenge 3

1 Jai plots the point $(-3,2)$. Which quadrant does it lie in? \qquad
$2(3,6),(3,2),(2,4)$ are the coordinates of three vertices of a rhombus.
What are the coordinates of the fourth vertex? (\qquad , \qquad)
3 What are the coordinates of B and D ?
B \qquad , \qquad _

D (\qquad

1 What are the properties of an isosceles triangle?

2 Measure this angle:

3 Look at these two shapes: Which lines are:
a) Parallel to line $a b$?
b) Perpendicular to $a b$?

\qquad
\qquad
5 What 3-D shape does this net make?

\qquad

6 Calculate angle y.

\qquad

7 Which shape is symmetrical to this one? Tick the correct answer.

a

b

C \square

All Types of Charts

Recognise and be able to understand pictograms, bar charts, line charts and pie charts

Pictograms

Pictograms use pictures to represent a certain number of something.

Example

This pictogram shows that there are 35 flowers in the garden.

Number of Flowers in the Garden

Bar Charts

Bar charts also display information (data) and make it easy to compare different amounts. A bar chart should have a title, and titles and labels on the axes.

Example

You can use this bar chart to answer questions such as:

- What is the most popular flavour of crisps?
- How many children like salt and vinegar crisps best?

Flavour of Crisps

Key Point

Bar charts always need to have a title, and titles and labels on the x and y axes.

Line Charts

Line charts are often used to show changes over time. For example, temperature or rainfall readings on weather charts and weight or height changes.
Unlike bar charts, the x axis labels on line charts must line up exactly with the grid lines. All the plotted points need to be joined carefully with straight lines.

Example

You can use this line chart to answer questions such as:

- Which month had the highest rainfall?
- What is the difference between the rainfall recorded in April and in December?

Pie Charts

Pie charts display information by dividing a circle into different-sized pieces to show each measurement.
Use a protractor to draw pie charts. Calculate the angles by finding the measurement as a fraction of the total $\times 360^{\circ}$.

Example

This table shows which sport 30 children liked playing best.
This can be represented as a pie chart.

Football	15
Hockey	8
Tennis	5
Running	2

Football $=\frac{15}{30} \times 360=180^{\circ}$
Tennis $=\frac{5}{30} \times 360=60^{\circ}$
Running $=\frac{2}{30} \times 360=24^{\circ}$

Quick Test

1. Look at the bar chart on page 76. How many more children like chicken flavour than ready salted flavour crisps?
2. Look at the line chart above. Which month had the least rainfall?

Key Words

- Axis
- Protractor

Statistics

Timetables and Calculating the Mean

- Understand and interpret timetables
 - Find the mean of a set of data

Interpreting Timetables

A timetable is a table showing the times for something such as buses, trains and school lessons. You can read a timetable to work out what you need to know, for example, what time the next bus arrives at the bus stop.

Example

The timetable below shows the route for the 131 Bus.
How long is the journey on Bus B from Langford Nook to Manor Junction?

	Bus A	Bus B	Bus C
Beech Avenue	$8: 05$	$9: 30$	$11: 00$
Langford Nook	$9: 38$	$10: 25$	-
Cambridge Street	$10: 10$	-	$12: 40$
Manor Junction	$11: 42$	$11: 40$	$13: 15$
Ardleven Square	$12: 35$	$13: 15$	$14: 30$

Bus B leaves Langford Nook at 10:25. It arrives at Manor Junction at 11:40.

11:40-10:25 = The bus takes 1 hour 15 mins.

Using this timetable you can work out how long the bus takes between each stop and the length of the total journey.

Tip

Timetables can help you plan your day. You could make one of your own.

If there is no time shown, then the bus does not stop at this bus stop.

Tip

Next time you are at a bus or train station, find a timetable and try to understand it.

Key Point

Timetables can help you calculate how long something will take.

Calculating the Mean

Study

The mean of a set of data is the 'usual' or 'average' amount. The mean of a set of results can be found by adding up the results and dividing them by the number of results.

Example

Patrick played in five football matches. Here is a record of the goals he scored:

Game 1	Game 2	Game 3	Game 4	Game 5
2 goals	3 goals	1 goal	3 goals	1 goal

Patrick scored 10 goals in total $(2+3+1+3+1)$.
Calculate the mean number of goals per game by dividing the total number of goals (10) by the number of games played (5).

$$
10 \div 5=2
$$

The mean number of goals scored per game $=2$
Patrick 'usually' scores two goals per game.
So, on average he scores two goals per game.

Quick Test

Answer questions 1 and 2 using the timetable on page 78.

1. Which buses could you catch to get to a meeting in Manor Junction at 12:00?
2. How long does it take Bus A to get from Langford Nook to Ardleven Square?
3. Calculate the mean rainfall for a week:

Sun	Mon	Tue	Wed	Thu	Fri	Sat
5 mm	0 mm	6 mm	5 mm	8 mm	2 mm	2 mm

Key Point

The 'mean' is the average of a set of data.

Practice Questions

To answer these questions you need to look at the graphs and charts on pages 76-77.

Challenge I

1 How many children like ready salted flavour crisps best? \qquad
2 Estimate how many children like cheese and onion flavour crisps best.
3 How much rain fell in July?
4 In which month was the highest rainfall recorded?
5 What is the least favourite sport?
\qquad
\qquad
\qquad

6 What is the mean of these three numbers?

$\longrightarrow \frac{\square}{{ }_{1 \text { maxk }}}$

Challenge 2

1 Estimate how many more children like cheese and onion flavour than ready salted flavour crisps. \qquad
2 Estimate how many children like salt and vinegar flavour crisps.
3 How much more rain fell in August than April?
4 What fraction of children prefer hockey?
5 Find the mean of this set of data:

Challenge 3

1 During how many months was the rainfall over 15 mm ?
2 What fraction of children prefer tennis?
3 What percentage of children prefer football?
\square

4 Find the mean of this set of data:
4.56 5

\qquad

5 The mean of a set of data is 8 . What is the fourth number? $10 \quad 8 \quad 6$?
\qquad
\qquad

Review Questions

1 What are the coordinates of points P, Q, R and S ?

P (\qquad , \qquad
Q (\qquad , \qquad
R (\qquad , \qquad
S \qquad , _

$2 A B C D$ are the vertices of a square Y. What are the coordinates of point D ?

D (\qquad -)

3 a) Translate shape $Z 2$ units left and 3 units up to produce shape Z^{\prime}. What are the coordinates of the vertices of Z^{\prime} ?
(\qquad , \qquad (\qquad , \qquad)

b) Reflect Z in the y axis to produce shape $Z^{\prime \prime}$. What are the coordinates of the vertices of $Z^{\prime \prime}$?
(\qquad) \qquad , -)
)

PS 4 Here are two identical squares. What are the coordinates of points L and M ?
L (\qquad , \qquad
M (\qquad —, ——)

Ratio and Proportion

Understanding Ratio

A ratio is the quantitative relationship between two amounts.
'The ratio of boys to girls in the class is 1:2' means for every one boy there are two girls.

Example

Emily is threading beads onto a necklace. For every one red bead, she puts on two blue beads.
Ratio of red to blue beads $=1: 2$
She has five red beads and nine blue beads. Can she continue her necklace in the ratio of 1 red: 2 blue? No - she needs another blue bead. You can work out how many blue beads she needs to match five red beads.
To get from 1 to 5 , you multiply the red side by 5 so you must do the same to the blue side: $2 \times 5=10$
Ratio of red to blue $=5$: 10
Red : Blue

Simplifying Ratios

You can simplify ratios in the same way you simplify fractions.

Example

To simply 6:18 you need to look for something you can divide both sides
 by. This is where your multiplication and division facts come in handy!
So 6:18 simplifies to $1: 3$

You can scale up ratios too. This means you can work out how many of something there are from a given ratio.

Example I

The ratio of boys to girls in a class of 32 children is $3: 5$.

So, there are 12 boys and 20 girls.

Example 2

Tanisha draws a triangle. The ratio of the sides is $3: 4: 8$.
$\begin{aligned} & \text { She then draws a triangle six } \\ & \text { times bigger. What are the }\end{aligned} \times 6\binom{3: 4: 8}{18: 24: 48} \times 6$ lengths of the sides of the new triangle?
The side lengths of the new triangle are 18:24:48

Ratio Tables

You can use ratio tables to help set out your work logically.

Example

Jane made a smoothie with a ratio of 2 bananas: 3 apples. How many apples will she need if she uses 12 bananas?
By experimenting with the top row and doing the same to the bottom row, you can find out how many apples Jane would need.

She will need 18 apples.

Quick Test

1. Oliver wants to thread beads in a ratio of red to blue of $3: 5$. He has nine red beads. How many blue beads does he need?
2. Simplify the ratio $24: 6$.
3. Looking at the ratio table above, how many bananas does Jane need to make a smoothie with 12 apples?

Key Point

Only multiply or divide ratios.
Never add or subtract numbers from any side.

Tip

You can think of the colon in a ratio as the word 'to'. So 2:3 means ' 2 to 3 '.

Key Words

- Ratio
- Simplify
- Scale up

Practice Questions

Challenge I

PS 1 How many red beads does Aisha need to make a necklace in the ratio of $2: 3$ (black: red) if she has 12 black beads?

2 Simplify this ratio 6:24
\qquad

PS 3 A recipe says you need flour and butter in the ratio of 1:2. If you have 400 g of butter, how much flour will you need?
$4 \quad 3: 9$ is the same ratio as 1: \qquad

Challenge 2

1 Does 15:25 fit the same ratio as 3:6? Give a reason for your answer.

PS 2 How many yellow beads does Aisha need to make a necklace in the ratio of $2: 4$ (yellow : red) if she has 20 red beads?

3 Simplify this ratio 64:24
PS 4 A recipe says you need flour, butter and sugar in the ratio of $3: 2: 1$. If you have 600 g of butter, how much flour and sugar will you need?
Flour: \qquad Sugar: \qquad

Challenge 3

1 A ratio of $3: 5: 2$ has been scaled up to $15: 25: 10$. What factor has it been scaled up by? \qquad
2 Simplify this ratio to its simplest form 42:14:7
PS 3 A recipe has the following ingredients. It feeds four people.
How much of each ingredient do you need if you want to make enough to feed 10 people?

| Ham | 50 g |
| :--- | :--- | :--- |
| Cream | 100 ml |
| Pasta | 250 g |

4 Which ratio is the same as 18:24:12? Tick the correct answer.
9:12:4 \square 6:12:4 \square 3:4:2 \square

Review Questions

1 Look at the graph.
Average Temperature in Longtown

a) Which month has the lowest temperature? \qquad
b) How many months show a temperature of over $15^{\circ} \mathrm{C}$?
c) How much warmer is it in July than December? \qquad
d) What is the mean temperature for the first three months of the year?
2 Look at the timetable.

	Kennedy Row	Gatsby Rise	Elm Road	Tibbs Avenue	Unicorn Close
Bus A	$09: 15$	$10: 20$	$10: 49$	$11: 03$	$12: 10$
Bus B	$10: 35$	$11: 10$	-	$11: 59$	$13: 25$

a) How long does it take Bus A to get from Kennedy Row to Tibbs Avenue?

b) Which bus reaches Unicorn Close from

Kennedy Row in the shortest time?
c) Why is there no time listed for Bus B at Elm Road?

Solving Equations

- Find missing numbers and work out more complicated equations
- Work out a sequence of numbers
- Find pairs of numbers that satisfy an equation with two unknowns

Missing Numbers

In maths and science, unknown numbers are often replaced by symbols or letters. The symbol x is often used in algebra.
$x+10=12$

Example

Look at this triangle. What is the value of x ?

The interior angles of a triangle total 180°.
So you can write an equation to calculate the value of x :
$95^{\circ}+45^{\circ}+x=180^{\circ}$
$140^{\circ}+x=180^{\circ}$
$x=180^{\circ}-140^{\circ}$
$x=40^{\circ}$

Number Sequences

Sometimes you can calculate a sequence of numbers by changing the value of the variable, n.

Example

If you change the value of n, you can calculate new

Key Point

A curly x is used in algebra so that it doesn't get confused with a \times (multiplication) sign.
 values for $n+5$.

n	1	2	3	4	5	$6 \ldots \ldots$
$n+5$	6	7	8	9	10	$11 \ldots \ldots$

Working Out More Complicated Equations

Sometimes equations are more complicated and you need to rearrange them before you can work out the answer.

Example

$3 a+5=23$
To calculate the value of a, you need to reorganise your equation to keep symbols on one side and numbers on the other:

$$
\begin{aligned}
3 a & =23-5 \\
3 a & =18 \\
a & =6
\end{aligned} \quad \begin{aligned}
& \text { To move the } 5 \text { to the other } \\
& \text { side, you take away } 5 \text { from } \\
& \text { both sides: } \\
& 3 a+5-5=23-5 \\
& 3 a=23-5
\end{aligned}
$$

Tip

A number and a letter written close together (e.g. 3a) means that they are multiplied ($3 \times a$) but you don't write the \times sign.

Equations with Two Unknowns

Sometimes you will come across a problem which has more than one solution.

Example

$a+b=7$
The solution for this problem is all the number bonds for 7 :

$$
\begin{array}{lll}
1,6 & 2,5 & 3,4 \\
a b=8 & &
\end{array}
$$

The solution for this problem is all the factors of 8 :
1, $8 \quad 2,4$

Quick Test

1. Find a :
a) $5 a+1=16$
b) $3 a-2=10$
c) $6+2 a=20$
2. For the variables 1 to 5 , calculate $2 n+3$.

Key Words

- Equation
- Variable

Practice Questions

Challenge I

$1 \quad 14-x=12$. Find x. \qquad
2 If $x=5$, solve the equations:
a) $3 x+1=$ \qquad b) $10-2 x=$ \qquad c) $x^{2}+1=$ \qquad
$3 a b=12$. Give all possible values for a and b.

Challenge 2

$1 a b=24$. Give all possible values for a and b.

2 Find x :
a) $3 x+1=13$ \qquad
b) $2 x-10=36$
$x=$ \qquad
C) $x^{2}+1=17$
$x=$ \qquad

3 Where $n=$ any number from 0 to 5 , give all solutions for $3 n+2$.

Challenge 3

$1 x$ is an odd number between 5 and 10. Give all possible answers for the following:
a) $3 x+1=$ \qquad or \qquad
b) $10-2 x=$ \qquad or \qquad
c) $x^{2}+1=$ \qquad or \qquad
PS 2 Find values for a and b that satisfy both these equations:
$a+b=55$ and $a-b=35$
$a=$ $b=$ \qquad
PS 3 You have three digit cards. Using each card only once, find a, b and c :
$c+2 a=10$
$a+b=9$
3
4
6 $a=$ \qquad $b=$ \qquad $c=$ \qquad

Review Questions

1 Draw arrows between the columns to match these ratios.
One has been done for you.

$3: 15$
$24: 6$
$3: 5$
$1: 4$
$3: 3$

2 Simplify these ratios:
a) $24: 3$
b) $15: 50$ \qquad
c) $8: 36$ \qquad
PS 3 Amelia's recipe has the following ingredients:

Cream	250 g
Sugar	100 g
Raspberries	75 g

Amelia wants to make double the quantity. How much of each ingredient does she need?

Cream
Sugar \qquad
Raspberries \qquad
PS 4 In a class of 36 children, the ratio of boys to girls is $4: 5$. How many boys are in the class?

5 Asif is making chocolate crispy cakes. He needs 100 g of crispies for each 50 g chocolate bar. If he uses 550 g of crispies, how much chocolate does he need?

Review Questions

1 If $x=5$ and $y=3$, find $3 x-2 y$.

2 Fill in the missing number: 110 - \qquad $=50+30$
3 If a is an odd number less than 10, give all possible values for $3 a-1$.

4 If $a=3$ and $b=8$, find $5 a-b$.
\qquad
$5 a b=30$. Find all possible values for a and b.

6 Solve $3 a-3=24$
$a=$ \qquad
PS $7 a$ and b are numbers greater than 3 but less than 10 .
$a-b=b$
$2 b=a$
Find values for a and b that solve both equations.
$a=$
$b=$ \qquad
PS $8 \quad x+y+2=10$
x and y are different odd numbers. Give all possible answers.

9 Fill in the missing number:
$35+20=67-$ \qquad
10 Solve $4 a+8=20$
$a=$ \qquad

1 Order these decimals from the smallest to the largest:

| 3.13 | 3.01 | 31.0 | 3.113 | 3.0 |
| :--- | :--- | :--- | :--- | :--- | PS $2 \begin{aligned} & \text { Use each card once to make } \\ & \text { two-digit numbers that make }\end{aligned}$ Use each card once to make

two-digit numbers that make these statements correct.

$58<$ \square 2

PS 3 Petra buys three bananas. She gets 13p change from a pound. How much does one banana cost?
\qquad

4 Put '+' or ' - ' signs in the spaces to make the statement correct:
14 \qquad 6 \qquad 3 \qquad $5=22$
5 An orange costs 25 p more than an apple. Chloe buys two apples and an orange for 85 p. How much does an orange and an apple cost?

Apple: \qquad p
Orange: \qquad \square
PS 6 Ike has 272 books to fit onto his book shelves. If 16 books fit on each shelf, how many shelves will he fill?

\qquad

7 Find 85% of 60 .

8 Find the missing number.
$\frac{3}{8}+\frac{\square}{8}=\frac{5}{8}$
9 Mina pours 125 ml of water into a jug. How much more water does she need to add to fill it up to the 1 litre mark?
\qquad
10 Which number is closest to 700 ? Circle the correct answer.
599
670
799
745

Mixed Questions

11 Translate triangle A to A^{\prime} moving 3 units left and 2 units down. Give the coordinates of the vertices of A^{\prime}.

12 What temperatures do A and B point to on the scale?

A: \qquad
B: \qquad

PS 13
Guenna buys six oranges and a smoothie.
She gets 34 p change from $£ 5.00$.
How much did the smoothie cost?
£ \qquad $\underbrace{\square}_{1 \text { mark }}$
PS 14 Graham has $£ 84.19$ in his bank account. He spends $£ 47.95$ on new trainers. How much money does he have left? \qquad
PS 15 Footballs cost $£ 13.75$ each. If Mr Flash, the PE teacher, wants to buy 15 new ones, how much will they cost? $£$ \qquad
PS 16 A school has 420 pupils and 30 teachers. It hires some 70-seater coaches to take everyone to a pantomime. How many coaches does it need to hire? \qquad
17 What is $\frac{3}{8}$ of 128 ? \qquad
$18 \frac{3}{12} \times \frac{1}{4}=\square$
19 Mike travels to school on the 8.40 a.m. bus. The journey takes 35 minutes. What time does Mike arrive at school?

20 Use these four digit cards to make the greatest even number greater than 6000:
4
3
7
5
$\frac{\square}{}+$
21 Which letter equals 300 thousand on the scale?

\qquad
22 Maura and Wahid each buy a drink.
Wahid gets 28 p change from a pound and Maura gets $£ 3.65$ change from $£ 5$.
How much did the drinks cost altogether?
£ \qquad $\underbrace{\square}$

23 Maths books cost $£ 7.85$.
A teacher buys 12 for her Year 6 class.
How much do the books cost altogether?
£ \qquad
24 Brian wants to lay a path around the edge of his garden.
He uses paving stones that are 45 cm long. How many stones does he need to buy for an 18 m path?

25 Find 65% of 120. \qquad
26 Adele put her cake into the oven at 3.45 p.m. It's ready at 5.20 p.m. How long did it take to bake?

\qquad
27 Give your answer as a mixed number. $\frac{3}{10}+\frac{4}{5}=$ \qquad
28 Work out angle x :

\qquad

Mixed Questions

29 Round 54.372 to one decimal place. \qquad
30 Calculate:
$3+4 \times 2-4=$ \qquad
PS 31 I buy two marker pens and a notebook.
The notebook costs $£ 3.60$.
I get $£ 1.16$ change from $£ 10$.
How much does each marker pen cost?
$£$ \qquad
PS 32 Mina thinks of a number.
She subtracts 2.5 then doubles her answer.
She adds 7 and then halves her answer.
The number she is left with is 15 .
What was her starting number? \qquad
PS 33 Song books cost $£ 9.85$. If a teacher buys 16 for the choir, how much do the books cost altogether?

$$
£
$$

\qquad
PS 34 Plastic cups are sold in packs of 12.
Bill needs 154 cups.
How many packs must he buy? \qquad
PS 35 This year, Al's season ticket for Pilchester Rovers has increased by 25%. It cost $£ 210$ last year.
What is the new price?

£ \qquad

$36 \frac{3}{7}+\frac{2}{7}=\square$
37 Work out angle x :

\qquad

38 Fill in the missing numbers:

$$
\begin{aligned}
& 55 \times 10= \\
& 1500 \div \square=15 \\
&
\end{aligned}
$$

39 What fraction does A point to on the scale?

40 Three friends hire a pedal boat for four hours.
It costs $£ 3.60$ for the boat and $£ 1.50$ per hour.
They share the cost equally.
How much does each friend pay?
£ \qquad \square
1 mark
PS 41 Joanna thinks of a number.
She subtracts 0.5 then doubles her answer.
She adds 5 and then halves her answer.
The number she is left with is 14 .
What was her starting number?

PS 42105 children sign up for football trials.
They are split into teams of seven children.
How many teams are there?

$43 \frac{1}{12} \div 2=\square$
44 What is the perimeter of this tennis court? \qquad
5 m

Mixed Questions

PS 45 What number does A point to on the scale? Estimate what number B points to.

A: \qquad B: \qquad
46 Jina hires a bike for eight hours on holiday. How much does she pay? £ \qquad

47 Fill in the blanks in this sequence.
$6 \quad 13.5$
\qquad 36

PS 48 Two rolls of ribbon are cut into lengths:

How many more pieces of the thick ribbon are there than thin ribbon?

PS 49 Zelda goes on a bike ride at 4.25 p.m. Her twin, Zainab, has to blow up her tyres and sets off 22 minutes later. If the trip takes 55 minutes, at what time do each of the girls reach their destination?

Zelda: \qquad
Zainab: \qquad
50 Reflect shape B in the x axis to create shape B^{\prime}.
What are the coordinates of the vertices of shape B^{\prime} ?

51 Fill in the missing numbers.

$$
\begin{aligned}
& 32 \times 10= \\
& 1300 \div \square=130 \\
&
\end{aligned}
$$

52 What decimals do A and B point to on the scale?

A: \qquad B: \qquad

\square marks

PS 53 Patrick weighs some flour for baking. This is what his scales show:
How much more flour must he add to show 1 kg on the scales?

54 Work out 36.37-9.76 using a written method.

55 Find the missing number.

$$
\frac{8}{12}-\frac{\square}{12}=\frac{5}{12}
$$

$562 \times 6-4 \div 2=$ \qquad
57 Work out angle x :

58 What 3-D shape will this net make?

Mixed Questions

59 Round 34.67 to the nearest whole number. \qquad
60 Which of the following are prime numbers?
$\begin{array}{llllll}7 & 16 & 23 & 25 & 39 & 41\end{array}$
PS 61 Benji wants to hire a bike for four hours. Which price plan is cheaper?
Price Plan A - Morning or afternoon $£ 6.50$, including helmet hire
Price Plan B - $£ 1.25$ per hour. Helmet hire $£ 2.00$

62 Work out 48.35-8.48 using a written method.

63 Change these mixed numbers to improper fractions:
$1 \frac{4}{5}$

$3 \frac{4}{7} \square$
$64 \frac{3}{4} \times \frac{1}{3}=\square$
PS 65 What is the perimeter of the dinosaur paddock?

66 For how many hours was the temperature above $25^{\circ} \mathrm{C}$?

67 Order these amounts from the smallest to the largest:
$£ 2.30 \quad 32 p \quad £ 3.20 \quad £ 32 \quad £ 2.33$

68 Round 676328 to the nearest 10000.
PS 69 Yasmin buys a ruler and two highlighters.
She gets $£ 1.64$ change from $£ 5$. The ruler cost 98 p.
How much did one highlighter cost?

PS 70 Skateboard equipment costs the following:

Helmet	$£ 11.50$
Gum shield	$£ 3.75$
Wrist guard (per pair)	$£ 1.65$
Shin pad (per pair)	$£ 3.85$

How much does Saran pay if he buys everything on the list? \qquad
PS 71 A builder needs 3600 slates for a roof.
Load: 500 Slates
How many loads must he buy?
$72 \frac{3}{15}+\frac{2}{5}=\square$
\qquad

PS 73 Calculate the perimeter of Farmer Trott's field:

\qquad
74 List all the common factors of 24 and 30.
\qquad

Mixed Questions

75 Here are four cards:

8
Using each card once, make an odd number where the thousands value is less than 7.

76 Which number is nearest to 20000? 18999 or 21003.
Give a reason for your answer.

PS 77 French dictionaries cost $£ 15.75$ each. Madame Mouchoir buys eight of them for her French club. How much does she spend altogether?
$£$

78 Work out 34.17-16.42
using a written method.

PS 79 Fin buys some football boots marked at $£ 55.00$. The shop assistant tells him they are now 15% off. How much does Fin pay for his bargain boots?

£ \qquad | |
| :--- |
| 1 mark |

$80 \frac{3}{4}+\frac{1}{6}=\square$
PS 81 My buttons have a radius of 4 cm . My button snake is made up of nine buttons. How long is my button snake? \qquad
82 This is from a recipe for four people. How much of each ingredient do I need if I want to make it for 10 people?

Pasta	100 g	g
Sauce	80 g	g
Cheese	120 g	-

83 Measure angle x.

84 What number does XXXVIII represent? \qquad
85 Put these fractions in order from smallest to largest:
$\begin{array}{llll}1 \frac{1}{6} & \frac{3}{4} & \frac{7}{12} & \frac{4}{6}\end{array}$
\qquad
86 Round 5682 to the nearest 1000. \qquad
PS 87 Peter is training for a 10 km run. This is his training log:

Week 1	Week 2	Week 3	Week 4
3.2 km	4.7 km	5.8 km	6.3 km

a) How many kilometres has he run after four weeks? \qquad
b) On average, how far did he run each week?

PS 88 How many bunches can Tina buy for $£ 20$?

\qquad
$90 \frac{1}{4} \div 2=\square$
PS 91 To make a smoothie I need apples, bananas and strawberries in the ratio of $2: 3: 10$.

How many strawberries do I need if I use eight apples? \qquad

Answers

Quick Test page 5
1 a) 32946
b) 354693
$2 \begin{array}{lll}2 & \text { a) ten } & \text { b) ten thousand }\end{array}$ c) hundred
$\begin{array}{llllll}3 & 4335 & 4324 & 4315 & 4253 & 4135\end{array}$
$\begin{array}{lll}4 & \text { a) } 2315<4643 & \text { b) } 5419>5416\end{array}$
c) $32556>32546$ d) $101322>10132$

Quick Test page 7

$\begin{array}{lllllllll}1 & -9 & -5 & -3 & -2 & 0 & 5 & 6 & 10\end{array}$
$\begin{array}{lllllll}2 & 4 & 1 & -2 & -5 & -8 & -11\end{array}$
$3 \begin{array}{llllll}3 & -50 & 0 & 50 & 100 & 150\end{array}$

Quick Test page 9

1 a) 64320
b) 64300
c) 64000
d) 100000

Quick Test page 10
1 a) 23
b) 46
c) 293
2 a) 1666
b) 1066
c) 1914

Practice Questions page 11

Challenge 1
146228
$\begin{array}{llllll}2 & 107 & 170 & 701 & 710 & 1071\end{array}$
3 14, 9, 4, -1, -6, -11
$\begin{array}{lll}4 & \text { a) } 3430 & \text { b) } 3400\end{array}$

Challenge 2

1489
2 658, 685, 856, 865
31945

Challenge 3

$\begin{array}{lllllll}1 & 17 & 25 \frac{1}{2} & 34 & 42 \frac{1}{2} & 51 & 59 \frac{1}{2}\end{array}$
2 MDXXXVI
3 No, all units are either 2 or 7
4
a) 345640
b) 345600
c) 350000
d) 300000

Quick Test page 13

1
a) 74
b) 22
c) 35

2 a) 79
b) 38
c) 447
d) 266

Quick Test page 15
141
2
a) 168
b) 252
c) 243

Quick Test page 17

1 a) 407
b) 1188
$2 £ 47.05$

Quick Test page 19

1 a) 651
b) 674
c) 3.87

Practice Questions page 20

Challenge 1
1 a) 55
b) 24
c) 83
d) 37

2110
3 a) 8169
b) 2152

Challenge 2
1 a) 535
b) 264
c) 743
d) 334

2262
3 a) 3908
b) 39.88

Challenge 3

1210
2898
3 a) $£ 61.66$
b) 5.38

Review Questions page 21

1 a) hundred
b) unit
c) hundred
$\begin{array}{llllll}2 & 314 & 334 & 341 & 413 & 441\end{array}$
$\begin{array}{lllll}3 & 515 & 415 & 315 & 215\end{array}$
$\begin{array}{llll}4 & \text { a) } 60 & \text { b) } 300 & \text { c) } 1280\end{array}$
5
a) 400
b) 1200
c) 200
$\begin{array}{lllllll}6 & 17 & 21.5 & 26 & 30.5 & 35 & 39.5\end{array}$
$\begin{array}{lllllll}7 & 7 & 1 & -5 & -11 & -17 & -23\end{array}$
$\begin{array}{llll}8 & \text { a) } 50000 & \text { b) } 20000 & \text { c) } 150000\end{array}$
9518 (18 greater, 478 is 22 less than 500)
10 No, all numbers in this sequence end in an even number
11 XXVII
12
a) 1936
b) 2018

Quick Test page 23

$$
\begin{array}{ll}
1 & 88 \div 11=8,88 \div 8=11 \\
2 & 1,30,2,15,3,10,5,6 \\
3 & 24 \\
4 & 1,2,4
\end{array}
$$

Quick Test page 25

19
264
32 and 7
423 or 29

Answers

Quick Test page 27
134620
217.53

3200
Quick Test page 29
1660
21260
333100
41887
Quick Test page 31
116
216.5

317
Practice Questions page 32
Challenge 1
1 1, 24, 2, 12, 3, 8, 4, 6
2 1, 2, 4, 8, 16
326 remainder 2
41245
536
637

Challenge 2

1 Any multiple of 15 ($15,30,45,60,75$, etc.)
2192
$3 \quad 14 \frac{6}{12}$ or $14 \frac{1}{2}$
40.1365

58
61102

Challenge 3

1 2, 3 and 5
23744
3125
415.5

Review Questions page 33

1 a) 74
b) 83
c) 48

2663
3667
$4 \quad$ a) 624
b) 255
c) 972
$5 \quad 250$
$6 \quad 140$
733
$8 \quad 140$
95639
10 £36.10
11817
$12 £ 19.37$
$13 £ 21.41$

Quick Test page 35

1 a) $\frac{1}{3}$
b) $\frac{2}{3}$
c) $\frac{6}{5}$
$2 \frac{1}{6}$
$\begin{array}{lllll}3 & \frac{2}{12} & \frac{1}{4} & \frac{3}{6} & \frac{2}{3}\end{array}$

Quick Test page 37

$1 \quad \frac{10}{12}=\frac{5}{6}$
$2 \frac{1}{8}$
$3 \quad \frac{11}{8}$
$4 \frac{1}{8}$
Quick Test page 39
10.35
23.6
$\begin{array}{lllll}3 & 8.4 & 8.43 & 8.55 & 8.57\end{array}$

Quick Test page 41

$1 \frac{9}{4}$
$21 \frac{5}{7}$

Quick Test page 43

196
2 Science. (Science 60\%, Maths 45\%)
3 76\%
4 25\%

Practice Questions page 44

Challenge 1
18
22.6
$3 \frac{1}{4}=0.25=25 \%$
$\frac{25}{75}=0.33=33 \%$
$\frac{45}{90}=0.5=50 \%$
$4 \frac{7}{8}$
$5 \quad 1 \frac{2}{5}$
$\begin{array}{lllll}6 & 0.56 & 0.6 & 0.61 & 0.65\end{array}$

Challenge 2

136
$2 \quad 18.6$
$\begin{array}{llll}3 & 0.25 & 0.20 & 0.75\end{array}$
$4 \quad \frac{7}{14}$ or $\frac{1}{2}$
$5 \quad 2 \frac{1}{4}$

Answers

Challenge 3

140
252
$3 \quad \frac{32}{35}$
$4 \quad \frac{27}{8}$
$5 \quad \frac{1}{4} \quad \frac{4}{12} \quad \frac{5}{6} \quad 1 \frac{1}{3}$
Review Questions page 45
180
2 2, 3, 5, 7, 11, 13, 17, 19
31904
$4 \quad 2,3$ and 7
564
$6 \quad 14.2$
$7 \quad 16$
8 a) 35.47
b) 354.7
c) 3547
9 a) 165.9
b) 16.59
c) 1.659
10 1, 3, 5 and 15
1191.2 cm

Quick Test page 47
1350 mm
2 0.254।
$3 \quad 3450$ grams
48 km
Quick Test page 49
130 cm
$224 \mathrm{~cm}^{2}$

Quick Test page 51

$136 \mathrm{~cm}^{2}$
$290 \mathrm{~cm}^{3}$
3 56743p
Quick Test page 53
1 19:35
2180
328 July

Practice Questions page 54

Challenge 1
$\begin{array}{ll}1 & \text { a) } 250 \mathrm{~mm} \\ \text { b) } 1.260 \mathrm{~km}\end{array}$
2 area $=24 \mathrm{~cm}^{2}$; perimeter $=20 \mathrm{~cm}$
3 7.45p.m.
4 £5.45

Challenge 2

1 a) 0.645 I
b) 4126 g

2 area $=7200 \mathrm{~cm}^{2}$; perimeter $=340 \mathrm{~cm}$
340 cm
428 June

Challenge 3

12.5 m
$3 \quad 23.5 \mathrm{~km}$
$248 \mathrm{~cm}^{3}$
$4 \quad 17 \mathrm{~cm}^{2}$

Review Questions page 55

1	12	4	$\frac{8}{11}$
2	$\frac{3}{5}$	5	$\frac{1}{16}$
3	$\frac{16}{24}$	6	$\frac{1}{30}$

7 Jacob $\left(\frac{4}{5}\right)$
$\begin{array}{llllll}8 & 3.25 & 3.24 & 3.2 & 2.35 & 2.34\end{array}$
$9 \quad$ a) 23.7
b) 24
$102 \frac{2}{5}$
$11 \frac{13}{4}$
$12 \frac{75}{100}$ (or $\frac{3}{4}$); 0.75
1332

Quick Test page 57

1540°
2 acute - a and c; obtuse - b, d and e
3 a) d
b) b

Quick Test page 59

$1 a=b=78^{\circ}$

Quick Test page 61

1

2 Cylinder
Quick Test page 63
1 B

Practice Questions page 64

Challenge 1
19 cm
230° (accept 28° to 32°)
360°
4 b
Challenge 2
1 Square-based pyramid
275° (accept 73° to 77°)
359°

Challenge 3

1138° (accept 136° to 140°)
2.6 .25 cm

3 Hexagonal-based prism

Answers

Review Questions page 65

1 cm or mm
2

mm	cm	m
35	3.5	0.035
270	27	0.27
3570	357	3.57

32.5 or 31

7 a) $£ 6.13$
452 cm
542 cm
b) $87 p$
$648 \mathrm{~m}^{2}$

Quick Test page 67

$1 x$ axis
$2(0,0)$
3 A(2,5), B(5,6), C(4,1), D(1,3)

Quick Test page 69

1 Translation $2 A^{\prime}(-5,5)$

Quick Test page 71

1 Reflection
2 A"'(-5,-5), (-5,-10), (-15,-5)

Quick Test page 73

$1 B(9,8), D(5,4)$
$2 E(2,5)$
Practice Questions page 74
Challenge 1
$1 \mathrm{~A}(2,4), \mathrm{B}(4,5)$ and $\mathrm{C}(6,1)$
2

$3 \mathrm{~A}^{\prime}(3,-1),(4,-3),(4,-1)$
$4(0,0)$

Challenge 2

1

$2 \mathrm{~A}^{\prime}(-2,-1),(0,-6),(1,-2)$
3 (2,2)

Challenge 3

1 Second quadrant
$2(4,4)$
$3 B(10,11), D(3,3)$

Review Questions page 75

12 equal sides and 2 equal angles
235° (accept 33° to 37°)
3 a) cd and ef
b) none
$4 \quad 25.6 \mathrm{~cm}$
5 Tetrahedron (triangular-based pyramid)
$6 y=100^{\circ}$
7 b

Quick Test page 77

115
2 April

Quick Test page 79

1 Bus A or Bus B
22 hours 57 minutes
34 mm
Practice Questions page 80
Challenge 1

$\mathbf{1}$	20	4	December
$\mathbf{2}$	$86-88$	5	Running
$\mathbf{3}$	15 mm	6	6

Challenge 2

1 66-68
2 64-66
39 mm
$4 \quad \frac{8}{30}$ or $\frac{4}{15}$
57

Answers

Challenge 3

13
$2 \frac{5}{30}$ or $\frac{1}{6}$
3 50\%
45
58

Review Questions page 81

$1 P(0,12), Q(-14,7), R(6,-3), S(-8,-8)$
$2 \mathrm{D}(-5,5)$
3 a) $Z^{\prime}(-12,-2),(-7,-2),(-12,8)$
b) $Z^{\prime \prime}(5,-5),(10,-5),(10,5)$
$4 \quad L(8,6), M(8,3)$

Quick Test page 83

115
2 4:1
38
Practice Questions page 84
Challenge 1
118
2 1:4
$3 \quad 200 \mathrm{~g}$
4 1:3
Challenge 2
1 No $15: 25=3: 5(3: 6=15: 30)$
210
3 8:3
4900 g flour, 300 g sugar
Challenge 3
15
2 6:2:1
3 Ham 125 g
Cream $\quad 250 \mathrm{ml}$
Pasta 625 g
4 3:4:2

Review Questions page 85

1 a) January
b) 5 months
c) $17^{\circ} \mathrm{C}$
d) $8^{\circ} \mathrm{C}$

2 a) 1 hour 48 minutes
b) Bus B
c) It doesn't stop there

Quick Test page 87

1
$\begin{array}{ll}\text { a) } a=3 & \text { b) } a=4\end{array}$
c) $a=7$
2 5, 7, 9, 11, 13

Practice Questions page 88

Challenge 1

$1 x=2$
2
a) 16
b) 0
c) 26

3 1,12; 2,6; 3,4 or 12,$1 ; 6,2 ; 4,3$

Challenge 2

1 1,24; 2,12; 3,8; 4,6 or 24,1; 12,2; 8,3; 6,4
2
a) $x=4$
b) $x=23$
c) $x=4$
$2,5,8,11,14,17$

Challenge 3

$1 x=7$ or 9 ;
a) 22,28
b) $-4,-8$
c) 50,82
$2 a=45$ and $b=10$
$3 a=3, b=6$ and $c=4$

Review Questions page 89

(1)
2 a) $8: 1$
b) $3: 10$
c) $2: 9$
3 Cream
500 g
Sugar 200 g
Raspberries 150 g
416 boys
5275 g

Review Questions page 90
19
$2 \quad 110-30=50+30$
3 2, 8, 14, 20, 26
47
5 1,30; 2,15; 3,10; 5,6 or 30,1; 15,2; 10,3; 6,5
$6 \quad a=9$
$7 a=8$ and $b=4$
81,7 or 3,5
$935+20=67-12$
$10 a=3$
Mixed Questions page 91
$\begin{array}{llllll}1 & 3.0 & 3.01 & 3.113 & 3.13 & 31.0\end{array}$
$23 \underline{5}>\underline{3} 4,58<\underline{6} 2$
3 29p
$4 \quad 14+6-3+5=22$
5 Orange 45p; Apple 20p
617
$7 \quad 51$
$8 \frac{2}{8}$
9875 ml

Answers

5610
57 103 ${ }^{\circ}$
58 Square-based pyramid
Mixed Questions page 98
5935
60 7, 23, 41
61 Plan A is cheaper $(B=£ 7)$
6239.87
$\begin{array}{lllll}63 & \frac{9}{5} & \frac{19}{8} & \frac{17}{10} & \frac{25}{7}\end{array}$
$64 \frac{3}{12}$ or $\frac{1}{4}$
6532 m
665 hours
Mixed Questions page 99
67 32p £2.30 £2.33 £3.20 £32
68680000
69 £1.19 or 119p
$70 £ 20.75$
718
$72 \frac{9}{15}$ or $\frac{3}{5}$
7334 m
74 1, 2, 3, 6

Mixed Questions page 100

75 2687, 2867, 6287 or 6827
7618999 is 1001 less than 20000 (21003 is 1003 more)
77 £126
7817.75

79 £46.75
$80 \quad \frac{11}{12}$
8172 cm
82 Pasta 250 g
Sauce $\quad 200 \mathrm{~g}$ Cheese $\quad 300 \mathrm{~g}$
83 In the range 54° to 56°
Mixed Questions page 101
8438
$85 \quad \frac{7}{12}, \quad \frac{4}{6}, \quad \frac{3}{4}, \quad 1 \frac{1}{6}$
866000
87 a) $20 \mathrm{~km} \quad$ b) 5 km
887
89 £67.50
$90 \frac{1}{8}$
9140

Glossary

24-hour	Time recorded as 24 continuous hours, e.g. 1 p.m. $=13: 00$	Common multiple	Numbers that are multiples of more than one number (e.g.
3-D	A shape with three dimensions: length, width and height.		12 is a multiple of $1,2,3,4,6$ and 12).
A Any		Composite shape	A shape made from other
a.m.	Any time after 12 midnight until 12 noon or midday.	Cube number	The result of multiplying a number by itself and by itself again, e.g. $4^{3}=4 \times 4 \times 4=64$
Acute	An angle measuring less than 90°.		
Adjust	Make corrections to a calculation after rounding.	D	
		Decimal place	The number of digits to the right of a decimal point.
Analogue	12-hour time written as a.m. (morning) or p.m. (afternoon) usually shown by a clock with hands.	Decimal point	A 'full stop' that comes between the place values units and tenths.
Angle on a straight line	Also called a straight angle. An angle on a straight line which	Decompose	To split numbers into factors, e.g. decompose $6=2 \times 3$
	$=180^{\circ}$ e.g. $\frac{180^{\circ}}{}$	Degrees	The units used to record angles, e.g. 90°.
Anti-clockwise	The opposite direction to which the hands move around a clock	Denominator	The number below the line in a fraction.
Area	The amount of material needed to cover a space. Units are usually $\mathrm{cm}^{2}, \mathrm{~m}^{2}, \mathrm{~km}^{2}$, etc. and can be calculated in rectangles as $A=l \times w$	Diameter	The distance across a circle through the centre. A number from 0 to 9 . Time expressed as digits, e.g. 9:15 instead of 'quarter past nine'.
		Digit	
		Digital	
Axis	The horizontal (x axis) or vertical (y axis) lines used in plotting coordinates.	Divisor	The number you are dividing by.
C Capacity		Equilateral	A number sentence where some numbers are replaced by letters, e.g. $2 a=6$ A triangle with three equal sides and three equal angles (all 60°).
	The quantity that can be held in a container. Can also be known as volume and is recorded as units ${ }^{3}$.		
Carry	To move a digit to the next column in a calculation.	Equivalent fraction	Fractions that equal each other, e.g. $\frac{2}{4}=\frac{1}{2}$
Circumference	The distance around a circle (perimeter).	Estimate Exchange	A sensible guess at an answer. To change a number, e.g. change 40 into 30 and 10 to allow you to move it into another column to help in calculations.
Clockwise	The direction in which the hands move around a clock		
Column method	Writing numbers in columns according to their place value to make them easier to add, subtract, etc.	F	
		Factor	Numbers that can be multiplied together to get another number (e.g. 2 and 3 are factors of 6). Using letters or symbols where the letters can be replaced by
Common factor	Numbers that are factors of more than one number (e.g. 5 is a common factor of 10 and 15).	Formula	

Glossary

Fortnight	numbers, e.g. the formula for the area of a rectangle is $A=l \times w$ Two weeks (14 days).	M Mass	How heavy something is, usually recorded in g or kg .
G Greater than	A larger value than another (>).	Mean	The average or usual value of something calculated by totalling the values and dividing
Hundreds	The place value where that digit equals a number of hundreds.		by the number of values, e.g. the mean of 2,6 and 7 $=2+6+7=15 \div 3=5$
Imperial	A measurement system used before the decimal system (e.g. pints, ounces, etc.).	Metric	A measurement system based on decimals, e.g. $1 \mathrm{~cm}=$ $0.01 \mathrm{~m}, 1 \mathrm{~kg}=1000 \mathrm{~g}$, etc.
Improper fraction	A fraction where the numerator is greater than the denominator, e.g. $\frac{7}{5}$ All improper fractions are therefore greater than one whole.	Midnight	The point in time between a.m. and p.m. recorded as 12 noon or 12:00 midday. The point in time between p.m. and a.m. recorded as 12 midnight or 00:00
Irregular	An irregular shape has sides of different lengths and interior angles that are not all equal.	Mixed number	A number containing a whole number and a fraction, e.g. $1 \frac{1}{2}$
Isosceles	A triangle with two equal sides and two equal angles.	digit Multiple	place value, e.g. 345.62 The result of multiplying a
L			given number by any other
Latin alphabet	The letters the Romans used to create their number system.		number, e.g. multiples of 4 are $4,8,12,16 \ldots$ (the 4 times
Leap year	A year with an extra day on 29 February (366 days), which occurs every four years.	Multiple of 10	table answers). A result of multiplying any whole number by 10, e.g. 10,
Least significant digit	The digit with the lowest place value, e.g. 345.68	N	20, 30, $40 \ldots$
Length	A measure of the longest side of a shape measured in mm , cm, m, km, etc.	Negative number	A number to the left of zero on a number line. Recorded with a minus (-) sign before it. (As the
Less than	A smaller value when compared against another (<).		digits increase the number has less value, e.g. -10 is smaller
Line of symmetry	A line in which a shape can be reflected to give a mirror image of itself.	Net	than -5). A 2-D representation of a 3-D shape opened up and folded
Lowest common denominator (LCD)	The denominator that other denominators can be divided into or are multiples of. The LCD of $\frac{1}{3}, \frac{1}{4}$ and $\frac{1}{6}$ is $\frac{1}{12}$ because all these fractions can	Number bonds	out. The corresponding numbers needed to make a given total, e.g. number bonds to 10: 1,9; 2,8;3,7; 4,6; 5,5.
	be written with a denominator of 12	Numerator	The number above the line in a fraction.
	$\left(\frac{1}{3}=\frac{4}{12}, \frac{1}{4}=\frac{3}{12}\right.$ and $\left.\frac{1}{6}=\frac{2}{12}\right)$.	0	
		Obtuse	An angle greater than 90° but less than 180°.

Origin	The point where the x and y axes meet with the coordinates $(0,0)$.	Properties
P		Protractor
p.m.	Any time after 12 noon or midday until 12 midnight.	Q
Parallel	Lines which run the same distance apart and never meet.	Quadrant
Parallelogram	A four-sided shape (quadrilateral) where the opposite sides are parallel.	Quadrilateral
Partition	To split a number into its individual parts depending on their place value, e.g.	R Radius
	$\begin{aligned} & 324=300 \text { (} 3 \text { hundreds), } 20 \text { (} 2 \\ & \text { tens) and } 4 \text { units. } \end{aligned}$	Ratio
Percent	A value expressed as something 'out of' 100, e.g. $25 \%=25$ out of $100=\frac{25}{100}$	Reflection
Perimeter	The distance around the outside of a 2-D shape.	Reflex
Perpendicular	A line lying at 90° to another line is said to be perpendicular to that line, e.g. Line A is perpendicular to Line B.	Regular
		Remainder
Place holder	A zero used to keep all digits in the correct column during multiplication.	Rhombus
Place value	The value each digit has, shown by its position.	Right angle Rounding
Polygon	A shape with at least three straight sides.	
Positive number	A number to the right of zero on a number line (e.g. 1,2,3,4, etc.).	Round down
Prime factor	A factor which is also a prime number (e.g. 2 and 7 are prime factors of 14).	Round up
Prime number	A number which only has two factors, itself and 1, e.g. 2, 3, 5, etc.	S Scalene
Product	The result of multiplying two or more numbers, e.g. the product of 2,4 and 3 is 24 .	Scale up

The features that describe a shape, e.g. the number and size of sides and angles.
A device used to measure angles in degrees $\left({ }^{\circ}\right)$.

One of four areas on a coordinate grid. Point $(3,4)$ will be in the first quadrant; $(3,-4)$ will be in the fourth quadrant.
A four-sided shape.

The distance from the edge of a circle to its centre.
The relationship between two amounts, e.g. the ratio of boys: girls is $3: 2$.
The mirror image of a shape after it has been reflected in a line.
An angle greater than 180° but less than 360°.
A regular shape has sides all the same length and all internal angles are equal.
The amount left over after a division calculation, e.g $10 \div 3$ = 3 remainder 1
A four-sided shape where opposite sides are parallel and all sides are of equal length.
An angle equalling 90°. Adjusting a number to the nearest 10, 100, etc. to make it easier to calculate with.
Reducing a number to the nearest 10 or 100 below it, e.g. 34 would round down to 30 . Increasing a number to the nearest 10 or 100 above it, e.g. 36 would round up to 40 .

A triangle where none of its sides or angles are equal. Multiplying by a set number to increase quantities, e.g. scale up the ratio $3: 2$ by $2=6: 4$

Sequence	A set of numbers that increase or decrease by the same value each time.	Units ${ }^{3}$ V	The units of measurement for a cubed number.
Simplify	To reduce a fraction to its simplest form by dividing the numerator and denominator by the same amount, e.g. $\frac{8}{2}=\frac{1}{3}$	Variable	A number that can change depending on what value it is given.
Square number	The result of multiplying a number by itself, e.g. $3^{2}=3 \times 3$ = 9	Vertically opposite	shape. The angles opposite each other when two lines cross. They are
Symbol	A shape or letter that represents a number.	Volume	equal. The quantity that can be held
Symmetrical	A shape where one side is the mirror image of the other.		in a container and recorded as units ${ }^{3}$ (calculated by
T			$l \times w \times h$ in a cuboid).
Tens	The place value where that digit represents a number of tens.	W Whole number	A number that does not have
Term	The corresponding number in a sequence, e.g. the third term of the sequence $1,3,5,7$ is 5 .	\times	any fraction or decimal parts, e.g. $34,5,126$.
Translation	To move a shape's position or direction without altering its original size or its shape.	x axis	The horizontal axis used when plotting coordinates.
Trapezium	A four-sided shape where one pair of opposite sides is parallel.	y axis	The vertical axis used when plotting coordinates.
U			
Units	The 'ones' place value. The system used to record measurements, e.g. the units for time are hours, minutes and seconds. The units for length are mm, cm and m .		

Grid Paper for Page 74, Challenge 1 and 2

Index

2-D shapes 58-61	L	R
	Leap year 53	Radius 57
$3-\mathrm{D}$ shapes $60-61$	Length 46	Ratio 82-83
	Less than 5	Reflection 70-71
A	Line chart 76-77	Reflex angle 56
Acute angle 56	Line of symmetry 62-63	Regular shape 58
Adjusting (in calculations) 12	Long division 31	Rhombus 58, 62
Analogue time 52	Long multiplication 29	Right angle 56
Area 49, 50		Roman numerals 10
Axis 66-73,77	M	Rounding 8-9, 14
	Mass 47	
B	Mean 79	S
Bar chart 76	Metric system 46-47	Scalene triangle 58
	Mixed number 40-41	Sequence 7, 86
C	Money 51	Short division 30
Capacity 47	Multiple 14, 23	Square number 25
Carrying numbers 17, 29		Symmetry 62-63
Circumference 57	N	
Column method 16-19	Negative number 6	T
Composite shape 48-49	Net 61	Term 7
Cube number 25	Number bonds 12	Times tables 22
	Numerator 34-38, 40-41	Timetables 78
D		Translation 68-69
Decimal place 39	O	Trapezium 58
Decimal point 17, 19	Obtuse angle 56	
Decomposing numbers 27	Origin 66	V
Denominator 34-38,40-41		Variable 86
Diameter 57	P	Vertically opposite angles
Digit 4, 8, 9	Parallel 57, 72	Vertices 70-71
Digital time 52	Parallelogram 50, 58, 72	Volume 47, 50
	Partition 15	
E	Percentages 42-43	X
Equation 86-87	Perimeter 48-49	x axis 66
Equilateral triangle 58, 62	Perpendicular line 57	
Estimating 14	Pictogram 76	Y
	Pie chart 77	y axis 66
F	Place holder 4	
Factor 22-24	Place value 4,18	
Formula 48	Positive number 6	
Fractions 34-43	Prime factor 24	
	Prime number 24	
G	Product 22	
Greater than 5	Protractor 77	
Grid multiplication 28		
	Q	
I	Quadrants 66	
Imperial measures 46-47	Quadrilaterals 58-59	
Improper fraction 40-41		
Irregular shape 58		
Isosceles triangle 58, 62		

