

KS1 Maths SATs Study Book

Study Book

Alan Dobbs and Janine Hutchinson

Contents

Number - Number and Place Value

Numbers and Counting	4
Counting Forwards and Backwards	6
Counting in Steps of 2, 3, 5 and 10	8
More and Less	10
Place Value	12
Practice Questions	13

Number - Addition and Subtraction

Solving Number Problems	14
Using Two-Digit Numbers	16
Practice Questions	18
Review Questions (Number – Number and Place Value)	19

Number - Multiplication and Division

Multiplication	20
Division	22
Connecting Multiplication and Division	
Practice Questions	
Review Questions (Number – Addition and Subtraction)	

Number - Fractions

What is a Fraction?	28
Halves and Quarters	30
Finding Fractions of Larger Groups	32
Practice Questions	34
Review Questions (Number – Multiplication and Division)	35

Contents

Measurement

Standard Units of Measure	36
Measuring Time	
Standard Units of Money	40
Practice Questions	42
Review Questions (Number – Fractions)	43

Geometry - Properties of Shapes

2-D and 3-D Shapes	44
Different Shapes	
Practice Questions	
Review Questions (Measurement)	

Geometry - Position and Direction

Patterns and Sequences	50
Turns	52
Practice Questions	54
Review Questions (Geometry – Properties of Shapes)	55

Statistics

Pictograms, Charts and Graphs	
Gathering Information and Using Data	58
Practice Questions	60
Review Questions (Geometry – Position and Direction)	61
Review Questions (Statistics)	62
Mixed Questions	63
Answers	72
Glossary	77
Index	

Numbers and Counting

- Understand what a number is
- Count from 0-20 in numbers and words
- Count to 100

Numbers

A **number** is a symbol used to **count** how many there are of something.

Numbers are odd or even. 2, 4, 6 and 8 are even and 1, 3, 5 and 7 are odd.

Each number has a value:

Counting

Counting is a way of finding an amount and knowing which number shows that amount.

Each number must follow an **order** or **sequence**:

- The number that has the least value in a sequence is 0.
- Each number above 0 has more value in the sequence.

1 2 3 4 5 One Two Three Four Five 7 9 10 6 8 Seven Eight Nine Ten Six 11 12 13 14 15 Twelve Thirteen Fourteen Fifteen Eleven 16 17 18 19 20 Eighteen Nineteen Sixteen Seventeen Twenty

Key Point

Remember that 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are the only single-digit numbers.

Key Point

You can count a sequence forwards or backwards but the order of the numbers stays the same.

Numbe	ers ar	re arra	angeo	l in a	sequ	ience	acco	rding	to va	ιlue:	Least to most value –
0	<mark>1</mark>	2	3	4		5	6	7	8	9 ←	single-digit numbers
10	11	12	13	14	15	16	17	18	19	20←	Least to most value – two-digit numbers to 20

- Here are 11 fish.
- If two more fish join them, count on two more to get 13.

Study

The symbol to show the number of fish is 11.

The symbol to show the number of fish now is 13.

Tip

Look for patterns in the number square. For example, the numbers increase by 10 down each column.

Key Words

100

- Number
- Count
- Value
- Digit
- Order
- Sequence

Counting to 100

You need to be able to count to 100. This number square will help you to learn the positions of the numbers from 0-99.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Quick Test

- **1.** a) Write the word for the number 4.b) Write the number symbol for thirteen.
- **2.** Circle the number in this list that has the lowest value and circle the number that has the highest value.

16 17 18 19 20

3. Write the missing numbers in the spaces.

	2		5	6	8	
11	12			16	18	

Counting Forwards and Backwards

- Count forwards and backwards
- Use number patterns

Counting Forwards

When you count **forwards**, you start with a number of lower value and move on to numbers with a higher value.

Example

Here are eight small frogs. If four of them jump away, how many frogs are left?

Start at 8. Count back 4 = 4 frogs.

Number Patterns

You can count forwards and backwards in steps of 2, 3, 5 and 10.

Quick Test

1. Write the missing numbers on the snake.

- **2.** Start at 19 and count back the given amounts.
 - a) Count back 5 =
 - **b)** Count back 11 =
- 3. There are five kittens asleep in a basket. If four of them wake up and go outside to play, how many kittens are still asleep in the basket?

Key Point

Jumps of 10.

Numbers always stay in the same order but can be counted backwards or forwards.

Study

- Forwards
- Backwards

Counting in Steps of 2, 3, 5 and 10

 Count in steps of 2, 3 and 5 from zero, and in 10s from any number, forwards and backwards

Counting in Steps of 2 and 10

When counting in **steps** of 2, you miss out each **alternate** number.

Example

Imagine you had 20 apples and each is in a **pair** of 2. You could count the apples in steps of 2.

You can count in steps of 10.

Example

If you have two boxes of sandwiches and each box holds 10 sandwiches, that would be two **lots** of 10, or 20 sandwiches, in total.

If you found two more boxes, how many sandwiches would you have now?

Counting in Steps of 3 and 5

A step of 3 is one lot of 3. Numbers can be counted in steps of 3.

- Starting at 0, the first step of 3 would be 3 and the next would be 6.
- You can start at any number and count forwards or backwards in steps of 3.

Example

If you had 27 pencils in a case and added three more, you would start at 27 and count on one step of 3. You would then have 30 pencils.

Study

A step of 5 is one lot of 5. Numbers can be counted forwards or backwards in steps of 5.

0	5	10	15	20	25	30 ← Least to most value.
30	25	20	15	10	5	0 ← Most to least value.

Example

There are 15 snails grouped into lots of 3. You can count them in steps of 3. There are five lots which is 15 snails in **total**.

Key Point

You can count in steps of 3 or 5 starting at any number.

Quick Test

- **1.** You have two pairs of socks and you get three more pairs. How many individual socks do you have?
- **2.** Write in the missing numbers counting in lots of 10.

3	4

_	_	_	_	

64	

3. Count back in steps of 10 to fill in the missing numbers.

94

72	62			32		
----	----	--	--	----	--	--

- Step
- Alternate
- Pair
- Lots of
- Total

More and Less

- Use symbols to show the relationship between the value of two numbers
- Identify one more or one less than a given number

What is More? What is Less?

More means a higher number value. Less means a lower number value. Each number has a value.

- A number that has a higher value is further up the number sequence.
- A number that has a lower value is further down the number sequence.

Key Point

When you make a number greater, you are adding. When you make a number smaller, you are subtracting.

Useful Symbols

You can use symbols to show the value of one number when compared to another number.

- The symbol < means 'is less than'.
- The symbol > means 'is more than'.
- The symbol = means 'is equal to'.

six fish

One More, One Less

To find numbers that are one more, and one less, first choose a number. Then find the number that is the next one forwards in the sequence and the number that is one backwards.

Key Point

If you know the correct sequence of numbers, you can find one more, or one less, of a given number.

Example

Quick Test

Here are three biscuits. What would be one more biscuit and one less biscuit?

One more than three biscuits would be four biscuits.

One less than three biscuits would be two biscuits.

32

Tip

When you add or subtract zero, the starting number remains the same.

 Write one more and one less.
 5
 7
 4
 Put these numbers in order from least to most: 3 45 21 19 35

3. Use < or > to show the values of these numbers.

b) 0

a) 16 9

2 **c)** 98

- Key Words
- More
- Higher
- Less
- Lower
- Equal

Place Value

- Understand place value in two-digit numbers
- Partition a two-digit number

What Does Place Value Mean?

Place value means that the value of a digit changes, due to where it is placed within the number.

A two-digit number, such as 34, is made out of two digits, a 3 and a 4.

Because the 3 is before the 4, its place makes it worth more. The 3 is worth 30.

So, 34 is really 30 and 4!

When you split a number into each digit's value, it is called **partitioning**.

Example

If these numbers were partitioned, then they would look like this:

56 = 50 + 6 12 = 10 + 2 78 = 70 + 8

Quick Test

1. Partition these two-digit numbers.

a) 65 = _____ **b)** 48 = _____

c) 50 + 1 =

b) 60 + 9 =

Key Point

A number can have a greater value because of its position.

Key Point

Remember that in two-digit numbers, the final digit is always the **units** and the first digit is always the lots of 10.

- Place value
- Worth
- Partitioning
- Units

Practice Questions

Solving Number Problems

- Understand number facts
- Solve one-step problems involving addition and subtraction
- Solve missing number problems

What is a Number Fact?

A number **fact** is a pair of numbers that equal an amount. **Different** pairs of numbers can equal the same amount.

All possible pairs that add or subtract to the same amount are known as facts for that amount.

These are the addition number facts that total 10. Learn these and you will be able to solve many **problems** using numbers up to 100.

0 + 10 = 10	4 + 6 = 10	8 + 2 = 10
1 + 9 = 10	5 + 5 = 10	9 + 1 = 10
2 + 8 = 10	6 + 4 = 10	10 + 0 = 10
3 + 7 = 10	7 + 3 = 10	

Example

Look at the teddies.

They are helping us with a number fact of 10: 3 + 7 = 10

There are 10 teddies in total. If you do the calculation as a subtraction, this is what it would look like: 10 - 7 = 3

Key Point

There are many more subtraction facts. For example: 11 - 1 = 1012 - 2 = 1013 - 3 = 10

Look at these number sentences:

3 + 7 = 10 10 - 7 = 3

Now imagine that there are 30 teddies and 70 teddies in separate groups. The calculation would look like this:

30 + 70 = 100 or 70 + 30 = 100

There are 100 teddies in total.

If you do the calculation as a subtraction, this is what it would look like: 100 - 70 = 30

Look at these number sentences:

30 + 70 = 100 100 - 70 = 30

Can you see the way adding a zero works?

Number Problems

A number problem is a sum that needs to be answered. Addition and subtraction can be used.

- Addition is the **inverse** or opposite of subtraction.
- Addition sums use + (add) and = (equals).
- Subtraction sums use (minus) and = (equals).
- Pictures can be used to help you solve problems.

Quick Test

1. Look at the balloons and make your own addition or subtraction number sentence.

+ 15 = 16 **b)** 20 = 10 +

Study

Tip

You can add numbers in any order. For example: 2 + 3 + 4 = 9 4 + 3 + 2 = 9 3 + 4 + 2 = 9

- Fact
- Different
- Problem
- Inverse

Number - Addition and Subtraction

Using Two-Digit Numbers

- Read, write and understand the use of +, and =
- Add and subtract one-digit and two-digit numbers

A Two-Digit Number and Ones

Adding a ones number (unit) to a two-digit number is easy! Always start with the larger number and count on **forwards** with the smaller number.

Find 54 on a number square or hold the number in your head. Now count forwards 7 ones to get 61.

Subtracting a ones number from a two-digit number is the same but in reverse. Always start with the larger number and count **backwards** with the smaller number.

Find 54 on a number square or hold the number in your head. Now count backwards 7 ones to get 47.

Using Two Two-Digit Numbers

When a number problem uses two two-digit numbers, you break down the sum into tens and units.

Tip

You could draw your own number line to fit around any addition or subtraction sum you wish to solve.

Example

Start by adding just the tens:

4 tens + 2 tens = 6 tens or 40 + 20 = 60

Then add the units:

Now add both of the answers together:

60 + 9 = 69

When you subtract a two-digit number from a twodigit number, start with the tens of the smaller number:

> 2 units 56 - 42 =

4 tens of the smaller number

Now count back 4 tens from the bigger number:

56 count back 4 tens: 56 46 36 26 16 Finally, use your answer and count back the units:

16 - 2 = 14

Quick Test

1. Solve these addition sums.

a) 33 + 4 = _____ **b)** 82 + 9 = ____

2. Solve these subtraction sums.

a) 87 – 5 = _____ **b)** 76 – 4 = _____

Study

Key Point

The first number in a two-digit number is the tens number and the second number is the ones/units number.

Key Point

You can only subtract a smaller number from a larger number.

Tip

Use a 100 square to help you count forwards and backwards in tens.

- Forwards
- Backwards

Practice Questions

Challenge I

1 Look at the bees. Find all ten addition number facts for the total number of bees.

10 marks

1 mark

1 mark

4 marks

1 mark

Challenge 2

- 1 What is the inverse of 6 + 4 = 10?
- 2 What is the inverse of 20 10 = 10?

Challenge 3

- 1 Answer the following missing number problems.

 - c) 20 = _____ + 17 d) 14 = _____ + 9
- 2 How many bottles would you need to add to have a total of 15 bottles?

Review Questions

1 mark

1 mark

1 There are 10 cookies on a plate and you eat three of them.

Count back to find how many cookies are left.

- 2 Put these numbers in order of value from least to most.8, 17, 3, 25, 56, 69, 0, 54, 71
- 3 Which group has fewer buttons?

5 These stepping stones are counting on to 100. Write the missing numbers on the stones so that they are in the correct sequence.

Com.	94	96	99	1 m	lark

Multiplication

- Recall and use multiplication facts of 2, 5 and 10
- Use the symbols × and = in a calculation
- Use arrays and repeated addition to solve multiplication problems

Multiplication

Multiplication means lots of, or times. Multiplication is repeated addition. It is like adding the same number lots of times.

Multiplication is an **operation**. It is shown by the symbol ×.

- To multiply, a single number is counted in lots of that number.
- A multiplication using two numbers can be done in any order and still have the same answer. This means multiplication is commutative.
- The numbers that are multiplied are called factors.
 The answer is called the product.

So 5×2 is five lots of two and 2×5 is two lots of five, but the answer, or product, is the same.

A picture that represents a multiplication is called an **array**.

Key Point

A multiplication of two factors can be done in any order and still give the same product.

A set of the same number being multiplied is called a times table.

You need to know your 2, 5 and 10 times tables.

1 × 2 = 2	1 × 5 = 5	1 × 10 = 10
2 × 2 = 4	2 × 5 = 10	2 × 10 = 20
3 × 2 = 6	3 × 5 = 15	3 × 10 = 30
4 × 2 = 8	4 × 5 = 20	4 × 10 = 40
5 × 2 = 10	5 × 5 = 25	5 × 10 = 50
6 × 2 = 12	6 × 5 = 30	6 × 10 = 60
7 × 2 = 14	7 × 5 = 35	7 × 10 = 70
8 × 2 = 16	8 × 5 = 40	8 × 10 = 80
9 × 2 = 18	9 × 5 = 45	9 × 10 = 90
10 × 2 = 20	10 × 5 = 50	10 × 10 = 100

Study

Example

Here are four lots of two buttons. Four lots of two equals eight buttons in total.

Quick Test

- **1.** Look at these repeated additions and write them as multiplications.
 - **a)** 2 + 2 + 2 = 6
 - **b)** 5 + 5 = 10

Tip

The multiplication 4×2 is repeated addition of 2 + 2 + 2 + 2. They both equal 8!

- Operation
- Factor
- Product
- Array

Number - Multiplication and Division

Division

- Use the symbols ÷ and = in a calculation
- Solve problems involving division using a variety of methods

Division

Division means to **share** into equal amounts. Division is an operation. It is shown by the symbol \div .

- When you **divide**, a **larger** number is shared so that each **amount** is the same.
- When you divide, the numbers cannot be divided in any order. Division is not commutative.
- Odd numbers such as 1, 3, 5 and 7 cannot be divided equally into whole numbers.

Example

If two people shared four sweets, it would mean that they got two sweets each.

The sum to show this would be:

 $4 \div 2 = 2$

The result of sharing a number into more divisions means that the amount in each share gets **smaller**.

Dividing Into Equal Parts

When you divide any number by 2, you halve its value.

- 4 divided by 2 = 2
- 20 divided by 2 = 10
- 100 divided by 2 = 50

Key Point

Odd numbers cannot be divided equally into whole numbers.

Key Point

Remember that you always divide the larger number by the smaller number. They cannot be switched around.

Example

Look at the pizza. If the whole pizza was shared by two people, they would get five slices each. If the pizza was shared by five people, they would only get two slices each.

The **calculation** would look like this:

 $10 \div 2 = 5$

 $10 \div 5 = 2$

Study

Quick Test

1. a) You and your friend have 10 strawberries. Divide them so that each of you has the same amount. How many strawberries would you each get?

- **b)** If you shared the strawberries between five people, how many would they each get?
- **c)** If you shared the strawberries between 10 people, how many would they each get?
- 2. Now look at the answers to question 1 a), b) andc) and write the calculation you did using ÷ and =.

a)	÷	 =	
b)	÷	 =	
c)	÷	 =	

- Share
- Divide
- LargerAmount
- Odd
- Equally
- Smaller
- Calculation

Connecting Multiplication and Division

- Show that multiplication is the inverse of division and use this to check calculations
- Solve problems involving multiplication and division using a variety of methods
- Doubling and halving numbers

Multiplication and Division

Multiplication and division are opposite.

- When you multiply the result has a higher product.
- When you divide the result is always lower.

You can check your work by doing a multiplication and division using the same numbers.

Example

Look at the four chickens. This calculation as a multiplication would be:

$$2 \times 2 = 4$$

Two lots of two chickens equals four chickens in total.

Using the same numbers as a division (inverse) would be:

 $4\div 2=2$

So, four chickens divided by 2 equals two chickens.

Doubling and Halving

When you multiply any number by 2, you **double** its value.

When you divide any number by 2, you halve its value.

Key Point

Division is the inverse or opposite of multiplication. Multiplication is the inverse of division.

Tip

Use multiplication to check your division answer and use division to check your multiplication answer.

Example

Here are six ice-creams.

If you multiply the number of ice-creams by 2, you double the number of ice-creams to 12:

 $6 \times 2 = 12$

If you then divide the 12 ice-creams by 2, you halve the number of ice-creams to 6:

 $12 \div 2 = 6$

Quick Test

1. Double the number of dice by multiplying them by 2.

2. Halve the number of dice in question 1 by dividing them by 2.

3. Colour this array to show the calculation $5 \times 2 = 10$.

4. What are the two factors in this multiplication?3 × 5 = 15

Key Point

Halving is the inverse of doubling.

Tip

Always start with the highest value number when dividing.

- Double
- Halve

Practice Questions

Chal	lenge l	
	2	

PS Problem-solving questions

Complete the times tables. 1 = × 11111 $1 \times 10 =$ 7 × 2 = 3 × 5 = 5 × 10 = $3 \times 2 =$ 6 × 5 = $10 \times 5 =$ 5 × 2 = 7 × 10 = $10 \times 10 =$ $10 \times 2 =$ $2 \times 5 =$ 4 marks Write the calculation for double and half the number of pears. 2 × = <u>•</u> =Challenge 2 If Kari had 10 bananas and she shared them equally with her friend,)PS) 1 how many bananas would they have each? 1 mark a) If one pizza has six slices, how many slices would two pizzas have? **PS** 2 1 mark **b)** Write the calculation. 1 mark Challenge 3 a) Write this repeated addition as a multiplication. 1 2 + 2 + 2 + 2 + 2 = 101 mark **b)** Write the inverse of this multiplication. $5 \times 4 = 20$ 1 mark

Review Questions

1 mark

6 marks

6 marks

1 Order these numbers from least to most according to their value.

23 2 45 17 89 16 98 10

2 Write one more and one less of these numbers.

- **3** Use the < or > symbols correctly for these numbers.
 - a) 14 16
 b) 23 25
 c) 67 66

b)	76	56
d)	89	34
f)	88	99

4 Fill in the correct symbol to make these calculations correct.

a)
$$4 \ 3 = 1$$

b) $14 \ 6 = 20$
c) $23 \ 7 = 16$
d) $9 \ 9 = 0$

5 How many two-digit numbers can you make from the single-digit numbers 2, 4 and 6? Write them in the spaces below.

6 marks

4 marks

What is a Fraction?

- Recognise, find and name a half as one of two equal parts of an object, shape or quantity
- Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity

Understanding Fractions

A **fraction** is part of a **whole** object, group of objects or a number. A fraction is made up of two numbers – a **numerator** at the top and a **denominator** at the bottom.

Halves

A half $(\frac{1}{2})$ is a fraction:

The top number (numerator) tells you how many parts of the whole you have.

 $\frac{1}{2}$

The bottom number (denominator) tells you how many equal parts are in the whole.

A half $(\frac{1}{2})$ of this circle is shaded:

Key Point

The bottom number of a fraction always says how many equal parts make a whole.

Tip

Remember that the 'd' in denominator means it is the 'down' part of the fraction.

Example

Look at the block. The block as a whole would be $\frac{2}{2}$.

- This means that two of the possible two parts are there.
- The blue fraction of the block would be $\frac{1}{2}$ of the whole.
- The pink fraction would also be ¹/₂ of the whole block.

Quarters

A quarter fraction is shown by $\frac{1}{4}$. The numerator (top number) is telling you that one part is shown and the denominator (bottom number) tells you that four equal parts make up the whole.

Example

This flag shows one-quarter $(\frac{1}{4})$ coloured red. What fraction of the flag is not coloured?

If four parts make up the whole and only one part is coloured, then there must be three parts that are not coloured. This means that $\frac{3}{4}$ of the flag is not coloured.

Ordering Fractions and Whole Numbers

Fractions can be shown on a number line. Look at this example.

3. What is $\frac{4}{4}$ the same as?

A quarter is half the value of a half.

Study

Key Point

Remember that $\frac{2}{2}$ and $\frac{4}{4}$ are the same as one whole.

- Fraction
- Whole
- Numerator
- Denominator
- Half

Halves and Quarters

- Recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$
- Work out simple fractions, for example $\frac{1}{2}$ of 6 = 3

Combining Halves and Quarters

Halves and quarters can be combined.

Look at the circle. It is split into quarters. Can you see that twoquarters make up half of the circle?

This means that two-quarters is equal to one-half. This is known as an **equivalent** fraction.

Example

Look at the square:

- $\frac{3}{4}$ is coloured
- $\frac{2}{4}$ is the same colour (yellow)
- the final quarter is a different colour (blue).
 This means that half of the

square is one colour and a quarter is a different colour.

But altogether $\frac{3}{4}$ of the whole square is coloured.

Key Point

A half is the same as two-quarters. It is an equivalent fraction.

Key Point

A fraction is always an equal part of something.

Finding a Fraction of a Group

You can discover a fraction of a group.

Example I

Look at the four lemons. If you think of them as a group, then two lemons would be half of the group.

How many lemons would a quarter be? A quarter of the group would be one lemon.

Study

Example 2

There are four worms in a group. How many worms would be $\frac{3}{4}$ of the group?

If four worms make the full group, each worm is worth $\frac{1}{4}$ of the whole.

So, $\frac{3}{4}$ of the group would be three worms.

- Equivalent
- Group

Finding Fractions of Larger Groups

• Recognise and find fractions of groups and numbers

How Do You Find a Fraction of a Group of More Than Four?

You can find a fraction of a group of more than four by dividing by 2. **Even** numbers can always be **halved** equally but not always **quartered** (for example 14 cannot be quartered).

If half of a group of 4 is 2, then what would half of a group of 8 be?

If you divide the group in half, then there are two equal groups of four snakes. This means that half of the whole group is four snakes.

A quarter of the group would be two snakes.

Example

Beth has six strawberries.

Beth's friend wants half of them. Count all of the strawberries in the group and divide that number by 2 to find half:

$6 \div 2 = 3$

Beth's friend would get three strawberries because this is half of the group.

Tip

Find half of a number by dividing it into two equal parts.

Key Point

Odd numbers in a group cannot be halved equally into whole numbers.

Fractions of a Number

If you can find a fraction of a group of objects, then you can find a fraction of a number.

Example

This number is 12. If you divide 12 by 2 to get two equal amounts, then the answer is 6:

 $12 \div 2 = 6$ 6 + 6 = 12

So half of 12 must be 6.

To find a quarter of 12 you need to halve the 6:

 $6 \div 2 = 3$ 3 + 3 = 6

So a quarter of 12 is 3.

Check this by splitting 12 into four equal parts:

3 + 3 + 3 + 3 = 12

A quarter of 12 is 3.

If you divide 12 by 3, you can find a third $(\frac{1}{3})$:

 $12 \div 3 = 4$

A third of 12 is 4.

Quick Test

1. What would half of this number be?

- **2.** Find $\frac{1}{4}$ of this number.
- 3. What would three-quarters of this number be?
- **4.** Find $\frac{2}{4}$ of this number.

Study

Tip

1

Finding a quarter of a larger group is like dividing the whole number of the group by 2 and dividing that number by 2 again to find a quarter.

- Even
- Halved
- Quartered

Number - Fractions

Practice Questions

Challeng	el						
1	Look at the blocks. A	B	C				
	a) Which block shows the fraction		1 mark				
	b) Which block has three-quarters coloured?						
	c) One of the blocks has $\frac{1}{4}$ colour Which one is it?	ed.		1 mark			
Challeng	e 2						
1	Write down the fraction that shows four equal parts making the whole.						
2	Add the fractions: $\frac{1}{2} + \frac{1}{4} =$		1 mark				
3	Which is the larger fraction: $\frac{1}{4}$ or $\frac{1}{2}$		1 mark				
4	Which fraction is equivalent to $\frac{2}{4}$?		1 mark				
Challeng	e 3						
1	Look at the ants.						
	Carlo Carlo	مرية مرية					
	Alto Alto	Alto Alto					
	a) How many ants equal half of the whole group?						
	b) A quarter of the group would b	ants.	1 mark				
	c) Six ants would be of the gr	oup.		1 mark			

Review Questions

Standard Units of Measure

- Choose and use standard units of measure for length, mass and capacity
- Compare and order length, mass and capacity using the correct symbols

What are Standard Units of Measure?

Standard units of measure are ways of measuring that are the same for everyone.

Standard measurements are used for **length**, **weight**, temperature and **capacity**.

Measuring Length

The standard unit used to measure length is **centimetres** (cm).

0	1	2	3	4	5	6	7	8	9	10cm

100 cm is equal to 1 metre (1 m).

Example

The first pencil measures 3 cm. The second is 2 cm and is the shortest pencil. The third pencil is 4 cm in length and is the longest of them all.

Measuring Mass

The **mass** of something is its weight. Mass is measured in **grams** (g) and **kilograms** (kg). There are 1000 g in 1 kg.

Key Point

1 kilogram (1 kg) is made up of 1000 grams (1000 g).
Example

The first scale shows that the bananas weigh 1.5 kg or 1500 g. The second scale shows that the shoe weighs 400 g. The bananas are heavier than the shoe.

Measuring Capacity

The capacity of something is how much it contains. Capacity is measured in **litres** (I) and **millilitres** (ml). There are 1000 millilitres in 1 litre.

> 1 litre . . 800 ml

600 ml

400 ml

200 ml

Example

- The first jug is full and contains 1 litre.
- The second jug contains 400 ml.

Quick Test

- 1. What is the mass of the book? _____ g
- How much water is in the jug? _____ ml
- **3.** What length is the blue line? _____ cm

Tip 'Kilo-' means one thousand.

Study

Both these scales are measuring in kilograms (kg). Each smaller mark equals 100 grams (g).

Tip

Remember to include the unit in which you are measuring (cm, m, g, kg, ml, l).

Both these jugs hold the same capacity, but each contains a different amount. Each longer mark represents 100 ml.

- Length
- Weight
- Capacity
- Centimetre
- Metre
- Mass
- Gram
- Kilogram
- Litre
- Millilitre

Measuring Time

- Compare and sequence intervals of time
- Tell and write the time including o'clock, half past, quarter past and quarter to
- Know the minutes in an hour and hours in a day

How is Time Measured?

Time is measured using a standard unit. Smaller amounts of time are measured in **seconds**, **minutes** and **hours**. Larger units of time are measured in days, weeks, months and years.

60 seconds = 1 minute
60 minutes = 1 hour
24 hours = 1 day
7 days = 1 week
52 weeks = 1 year
12 months = 1 year

A clock is used to measure the smaller units of time. This clock is set at 2 o'clock.

$\begin{array}{c} A \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 5 \end{array}$

Clock A shows a time of **half past** two. The long hand has gone half way around the clock so the time is half past two.

Key Point

It is always something past the hour until the long hand goes past the 6. It then becomes something to the hour.

Key Point

Each number on a clock represents a five-minute interval.

Tip

You can measure time in fractions of an hour.

39

When the long hand is pointing at the number 3, it has gone a quarter of the way around the clock. Clock B shows **quarter past** one.

If the long hand points to the 9, it is **quarter to**. Clock C shows quarter to four.

Days and Months

These are the days of the week:

Monday Wednesday Friday Sunday Tuesday Thursday Saturday

These are the months of the year:

Quick Test

1. Draw hands on the clocks to show the time in quarter of an hour intervals starting at 4 o'clock.

- 2. Today is Wednesday, so what day is tomorrow?
- **3.** Name the rest of the months in order: January, February, March

- Second
- Minute
- Hour
- O'clock
- Half past
- Quarter past
- Quarter to

Standard Units of Money

- Recognise and use symbols for pounds (£) and pence (p)
- Combine amounts to make a particular value
- Solve simple problems including giving change

Standard Units of Money

In the UK the standard units of money are **pounds** (\pm) and **pence** (p). Other countries sometimes use different standard units of money.

Units of money are known as **currency**.

Pounds can be **coins** or **notes** depending on their value. Pence are coins that are worth different amounts.

Here are some of the coins and notes used as standard currency in the UK:

Coins can be used in different **combinations** to make the same amount.

Example

Look at the coins. Each group has the same value but uses a different combination of coins.

The total value of each group is 5p.

Key Point

100 pence equals 1 pound (or 100p equals £1).

Giving Change

If you buy something and you pay with too much money, you will be given some money back as change.

Example

Joshua wanted to buy a banana costing 17p. He gave the shopkeeper 20p.

The shopkeeper gave Joshua 3p change.

20p – 17p = 3p

Quick Test

Using different numbers of the coins above, write down six different combinations you could use to make a total of 10p.

If you had a 20p coin, how much change would you receive if you bought each of the items separately?

- a) Item 1: _____ p change
- b) Item 2: _____ p change
- c) Item 3: _____ p change

Study

Tip

You can practise giving change with real coins by asking an adult to help.

Key Point

When you pay with too much money, you will get some money back. This is called change.

- Pounds
- Pence
- Currency
- Coin
- Note
- Combination

Measurement

Practice Questions

Number - Fractions **Review Questions PS** Problem-solving questions Write the fraction coloured in each of these shapes. 1 **b**) a) c) 3 marks How many halves are there in $2\frac{1}{2}$? 2 1 mark How many quarters are there in $1\frac{3}{4}$? 3 1 mark Starting at $\frac{3}{4}$ and counting on $\frac{1}{2}$ what number do you arrive at? 4 1 mark How many quarters are there to reach number 2? 5 1 mark Count back three-quarters from number 3. Where do you finish? 6 1 mark Look at this group of caterpillars: **PS 7** a) How many would half of this group of caterpillars be? 1 mark **b)** What would a quarter of the group be? 1 mark What is half of 16? _____ 8 1 mark

2-D and 3-D Shapes

- Recognise and name common 2-D and 3-D shapes
- Name simple properties of 2-D and 3-D shapes

2-D Shapes

A **2-D shape** is sometimes called a **flat shape**. Here are the most common 2-D shapes.

If you look at each of them, they all have different **properties**. Properties are special features of that **shape** that allow it to be described.

Example

- The triangle has three straight sides and three **corners**.
- The square has different properties. A square has four straight sides that are all equal in length. It has four corners.

square

cylinder

Key Point

Not all triangles look the same, but they are still triangles.

3-D Shapes

A **3-D** shape is also known as a solid shape. Here are the most common 3-D shapes.

Tip

Remember to include the faces that you can't see in a drawing of a 3-D shape. 3-D shapes also have their own properties that help you to identify them.

Example

• A cube has six **faces** that are equal and square. It has 12 straight **edges** and eight **vertices**.

A cuboid also has six faces. It also has 12 straight edges and eight vertices.

cuboid

Quick Test

1. What 2-D shape is described here?

This shape has four straight sides and four corners. It has two short sides and two long sides.

2. Give two properties of a square-based pyramid.

square-based pyramid

3. Which of these 3-D shapes has no corners or flat faces?

4. A pentagon has five straight sides. Which of these shapes is a pentagon?

Study

Key Point

A cube and a cuboid have the same number of faces, edges and vertices.

A cuboid has some rectangular faces, which make it different to a cube. All six faces of a cuboid can be rectangular or the two end faces may be squares.

- 2-D shape
- Flat shape
- Properties
- Shape
- Corner
- 3-D shape
- Solid
- Face
- Edge
- Vertex (vertices)

Different Shapes

- Compare and sort common 2-D and 3-D shapes and everyday objects
- Understand what symmetry is

Different Shapes

Some 2-D and 3-D shapes may look different in appearance but they are still the same kind of shape.

Triangles, rectangles, cylinders, cuboids and pyramids come in many different forms but they still share the same properties with other shapes of the same kind.

Look at these 3-D shapes. They are all different but all three are cylinders.

Sometimes all the sides and all the angles of a 2-D shape are equal. Then the shape is **regular**.

Everyday Objects

2-D and 3-D shapes are used for everyday objects.

Key Point

Some shapes look different to each other but still have the properties of that shape.

Tip

Look for examples of 3-D shapes around your house.

Symmetry

Symmetry means a shape is the same on each side when a line is drawn through the middle of it.

If a shape is **symmetrical**, then it is the same on both sides.

This square is divided into two equal parts by a line of symmetry.

A square has other lines of symmetry too:

Quick Test

- **1.** Match the description to the shape. Write the correct letter on the shape.
 - a) This shape has six faces and eight vertices.
 - **b)** This shape has three straight sides.
 - c) This shape has five straight sides.
 - d) This shape has two faces that are circles.
 - e) This shape has six straight sides.

Key Point

A line of symmetry can go up and down, across or diagonally.

õ

Ô

- Regular
- Symmetry
- Symmetrical

Geometry - Properties of Shapes

Practice Questions

(hallenge	Problem-solving ques	stions
	1	Name these 2-D shapes.	
		a) b) c)	
	2	A 2-D shape has six straight sides. The shape is a	3 marks
(Challenge	e 2	
	1	Name these 3-D shapes.	
		a) b) c)	
	2	Write down two properties of a cuboid.	3 marks
PS	3	This 3-D shape has no straight edges and two of its faces are circles.	2 marks
		The shape is a	
	l. allow a		1 mark
	nallenge		
	1	Draw a line of symmetry on each of these 2-D shapes.	2 marks
	2	Put an X on all of the vertices that you can see.	
			8 marks

Review Questions

Patterns and Sequences

- Order and arrange combinations of mathematical objects in patterns and sequences
- Use mathematical vocabulary, such as above and below, to describe position, direction and movement

What is a Pattern or Sequence?

A **pattern** or sequence is when the order of something is **repeated**.

Patterns and sequences can appear in lots of different ways.

Example

Look at the squares. Can you see a repeating pattern of colours?

The first three squares are blue. They are followed by one orange square and then the sequence repeats.

So the next three squares will be blue.

Patterns and Sequences of Numbers

Numbers can also form patterns and sequences.

Example

1, 1, 2, 2, 3, 3, 4, 4 is a repeating sequence.

If you look at the sequence, each number is repeated twice.

So that means that 5, 5 would be next in the sequence.

Key Point

A pattern or sequence has an order that repeats.

Tip

You need to look at the whole pattern or sequence, not just the start of it, to work out what comes next.

Directions and Movement

A **direction** is the way something is moving. If you change direction, then you have altered where you are going.

To change direction you have to turn.

Example

Look at the clocks. The arrow around the first clock shows the hands moving in

a **clockwise** direction. The arrow around the second clock shows the hands moving in an **anti-clockwise** direction. A clockwise turn is to the right. An anti-clockwise turn is to the left.

Look at the picture of the star, planet and spaceship. You could use the words **top**, **middle** and **bottom** to describe their positions. You could also say the star is above the planet and the spaceship is below the planet.

Here the star is at the top. The planet is in the middle. The spaceship is at the bottom.

Key Words

Pattern

RepeatedDirection

Clockwise

• Top

Middle

Bottom

Anti-clockwise

Quick Test

to make the shortest turn? Clockwise or anti-clockwise?

Study

Key Point

Words to describe direction and position are used every day: between, around, near, up, down, forwards, backwards, above, below, etc.

Geometry - Position and Direction

Turns

- Understand rotation and describe turns
- Understand half turns and quarter turns
- Follow directions and describe movement in a straight line

Fractions of a Turn

The amount that you turn can be measured in fractions of a turn. A **quarter turn** is also called a **right-angle turn**. There is also a **three-quarter turn**.

Another word for a turn is rotation.

Key Point

A quarter turn is also called a rightangle turn.

Imagine that you were standing on the **X** at the centre of this circle. You are facing **a** and want to face **b**. You would make a quarter, or right-angle turn, clockwise, in order to face **b**.

To return to **a** you would need to make an anti-clockwise, quarter turn.

If you were facing **a** and wanted to turn to face **c**, then you could make a **half turn** clockwise or anti-clockwise.

Tip

Stand somewhere and practise making these turns for yourself.

Following Directions

To follow directions you need to understand the instructions or you might end up in the wrong place!

Example

Look at the map and follow these directions.

- **1.** Place a finger on 'START' and move forward five squares heading past the trees.
- 2. Make a quarter turn clockwise.
- 3. Move forward one square.

You should now be at the square containing the key!

	ک ک	Ŷ		
	Ŷ	Ŷ		
	Ŷ			
	Ŷ	Ŷ		
	Ŷ			Ŷ
START	Ŷ	Ŷ	Ŷ	Ŷ

Study

Tip

Remember – a clockwise turn is a right turn.

Quick Test

 Use the grid above to write a list of seven directions to collect the coin and get to the house. You cannot move through squares that have trees. Good luck!

Begin at the square that has the key, facing in the direction you finished in step 3 above.

- Quarter turn
- Right-angle turn
- Three-quarter turn
- Rotation
- Half turn

Geometry - Position and Direction	
Practice Questions	
Challenge I	PS Problem-solving questions
1 Look at the pattern of triangles.	$ \land \land$
The next two triangles will be an	d
2 Look at this sequence and fill in the missing num	bers.
2 2 2, 4 4 4,, 8 8 8,	, 12 12 12
3 Is a left turn clockwise or anti-clockwise?	2 marks
Challenge 2	
1 If you were standing at X looking at number 1, would you move clockwise or anti-clockwise to face number 4 in the shortest turn?	4 2
2 What kind of turn would you make in question 1 Tick the correct answer.	? 3
a) A quarter turn clockwise.	
b) A quarter turn anti-clockwise.	
c) A half turn anti-clockwise.	1 mark
Challenge 3	
PS 1 Continue this sequence.	
9–8, 1–2, 7–6, 3–4,,	
2 Describe this number pattern. 2, 5, 8, 11, 14	2 marks
 You take two steps forwards, turn right and take turn to the left and make five steps. How many steps have you made in total? 	e three steps, then

Review Questions

56

Statistics

Pictograms, Charts and Graphs

- Interpret and construct simple pictograms, tally charts and block diagrams
- Answer simple questions by counting the number of objects in each category and sorting them by quantity

What is a Pictogram?

A **pictogram** is a way of showing **information** using pictures.

Example

Look at this pictogram. It shows information about snacks brought into school.

The pictogram shows that three children brought an apple, because there are three apples.

How many children brought grapes?

If you count the bunches of grapes, there are four. So four children brought grapes.

total number

 THU
 I

 THU
 IIIII

INI INI

Tally Charts

A **tally chart** is used to show data. A tally chart counts in lots of five.

There are two tallies of five and two lines, so the total is 12.

There is one tally of five and four lines, so the total is 9.

Key Point

The category with the biggest number is the most popular. The category with the smallest number is the least popular.

A vertical mark shows one object up to four objects. The fifth object is marked by a diagonal line. So this tally shows 8.

Key Point

A tally chart counts in lots of five.

There is one tally of

five and one line, so

There are two tallies of

five, so the total is 10.

the total is 6.

Block Graphs

Block graphs show information using a number **scale**. They are better at showing larger amounts.

Example

Look at the graph about snails. If you use the number scale at the side, you can see how many snails were found. The scale counts in lots of five.

The scale tells you that 20 grey snails, 15 white snails, 10 orange snails and 25 brown snails were found.

Quick Test

- **1.** Use the block graph above to answer these questions.
 - a) What was the most common snail?
 - **b)** What was the total of grey and white snails?
 - **c)** Fill in this tally chart to represent the information shown in the block graph.

Coloured snail	Tally
Grey	
White	
Orange	
Brown	

- Pictogram
- Information
- Tally chart
- Block graph
- Scale

Gathering Information and Using Data

• Share and interpret data in graphs, tables and charts

What is Data?

Data is information. You can share data by making a graph, table or chart to display it.

You can also make a graph of someone else's data.

Example

Look at this tally chart. It shows a tally of favourite pets.

Rabbit 🔬	
Dog 🐂	
Cat 🎇	
Fish 💉	ΓΗ.

If you were to use the data from the chart to make a block graph, it would be easier to understand.

To construct a block graph, you need to write the numbers (amounts) on the vertical axis and the pets on the horizontal axis.

Key Point

Data can be displayed in different ways.

Interpreting Data

You need to be able to interpret data shown in tables and charts.

Example

Children at a school collected information about the weather in May. They marked each school day with a symbol to show what the weather was like. Weather in May

	Day 1	Day 2	Day 3	Day 4	Day 5
Week 1					
Week 2					
Week 3					
Week 4					
				-	

When you collect information over a period of time and arrange it that way, it is called **chronological**.

Quick Test

- **1.** Use the 'Weather in May' table to help you answer these questions.
 - a) How many days was it cloudy but dry?
 - **b)** How many days did it rain?
 - c) It was sunny for _____ days.
 - **d)** Over how many days did the children gather information?

Key Words

- Data
- Graph
- Table
- Chart
- Chronological

During the first week it was sunny for two days but it rained for three days.

Tip

Remember that data is just another word for information.

Study

Practice Questions

Challenge I

PS Problem-solving questions

3 marks

1 mark

1 mark

1 mark

1 Make a tally of these sweets.

Sweets	Tally
44 44 44 44 44 44	
000	
44A	

Challenge 2

PS 1 Look at the table showing children's hair colour in a class.

Blonde	
Brown	Key:
Black	= 1 child

- a) How many children had blonde hair?
- **b)** There are _____ more children with brown hair than black.
- c) What is the total of children shown? _____

Challenge 3

- 1 Look at the block graph.
 - a) How many minutes does it take to bake a bread cake?
 - b) How many minutes does a small loaf take to bake?

Review Questions

1 Look at this collection of things.

- b) What is next to the beaker?
- c) Which two things are below the ball?
- d) What is to the left of the ball?
- 2 Find your way through the maze using clockwise (right) and anti-clockwise (left) turns.
 - a) Draw your route through the maze.
 - b) Circle clockwise turns in green.
 - c) Circle anti-clockwise turns in red.
- **3** Draw the shapes in the correct position in the grid.
 - a) A triangle is in the **centre** square.
 - **b)** A star is **above** the triangle.
 - c) An X is **below** the triangle.
 - d) A circle is to the left of the triangle.
 - e) A Y is to the **right** of the star.

5 marks

1 mark

1 mark

1 mark

1 mark

3 marks

Statistics

Review Questions

PS Problem-solving questions

1 mark

1 mark

1 mark

3 mark

1 Jai made a tally chart showing the colour of cars passing school.

Car	Tally
Red	
Black	
Blue	

- a) How many black cars passed school?
- b) How many red cars passed school?
- c) What was the total number of cars?
- Beth counted the birds visiting her feeders.
 She counted 8 blackbirds, 3 robins and 11 sparrows.

Show this information as a tally chart.

3 Use the chart to answer these questions.

- a) How tall was the sunflower in week 1?
- b) How tall was the sunflower in week 3?
- c) Between which two weeks did the sunflower grow the most?

Bird	Tally
Blackbird	
Robin	
Sparrow	

1 mark

1 mark

1 mark

Mixed Questions

63

Test Your Skills

Mixed Questions

Test Your Skills

Mixed Questions

Mixed Questions

PS Problem-solving questions

1 mark

1 mark

mar

10 Write the correct time in words.

PS 11 Look at the tally chart.

How do we get to school?		
Categories	Tallies	
Walk	I	
Bike		
Car		
Bus		

- a) How many children walked to school?
- **b)** How many more children took the bus to school rather than the car?
- c) How many children were asked how they got to school?

1 mark

Mixed Questions

She eats six sweets. How many are left?

12 Janine has 10 sweets.

13 Alan has 20 marbles.

)PS)

He finds 10 more marbles. How many marbles does he have now?

14 Katie bought six new pairs of socks and Michael bought three new pairs of socks.

How many new pairs of socks were bought altogether?

1 mar

Mixed Questions

PS Problem-solving questions

1 mark

1 mark

1 mark

15 Look at the picture and use the following words to make the sentences correct.

How many apples did they each get?

PS

Mixed Questions

- **17** Complete the multiplications.
 - a) $5 \times 2 =$ ______ b) $7 \times 3 =$ ______ c) $6 \times 10 =$ ______
 - **d)** 10 × 10 = _____
 - **e)** 1 × 5 = _____
 - f) 9 × 2 = _____
 - **g)** 3 × 5 = _____
 - **h)** 5 × 5 = _____
 - i) 4 × 10 = _____
 - j) 8 × 2 = _____
- 18 Solve the following addition sums.
 - **a)** 46 + 33 = _____
 - **b)** 21 + 58 = _____
- **19 a)** Colour $\frac{1}{4}$ of the circle.
 - **b)** Colour $\frac{3}{4}$ of the square.
 - c) Colour $\frac{1}{2}$ of the triangle.

1 marl

1 mark

1 mark

2 marks

1 mark

Mixed Questions

24 How much water is in each jug?

- 25 Partition these two-digit numbers.
 - **a)** 46 = _____ tens _____ units
 - **b)** 25 = _____ tens _____ units
 - **c)** 99 = _____ tens _____ units
 - **d)** 57 = _____ tens _____ units
- **26** Write these digits in words.
 - a) 9 ______
 b) 30 ______
 c) 16 ______
 - d) 7

Answers

Page 5 Quick Test 1 **a)** four **b)** 13 16 =lowest value; 20 =highest value 2 **1** 2 **3 4** 5 6 **7** 8 **9 10** 11 12 **13 14 15** 16 **17** 18 3 19 20 Page 7 Quick Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 **20 a)** 14 **b)** 8 2 3 1 Page 9 Quick Test 1 10 2 34 **44 54** 64 **74 84** 94 72 62 52 42 32 22 12 3 Page 11 Quick Test 1 4 5 6 3 4 6 7 8 2 3, 19, 21, 35, 45 3 a) 16 > 9 b) 0 < 2 c) 98 > 32Page 12 Quick Test a) 60+5 b) 40+8 c) 10+3 d) 70+7 1 2 a) 35 b) 69 c) 51 **Page 13 Practice Questions** Challenge 1 5 10 15 20 25 30 1 Challenge 2 a) 34 b) 67 c) 78 d) 99 1 2 2, 16, 23, 44, 54, 87, 100 23, 45, 5, 13 3 Challenge 3 **21** 18 **15** 12 **9** 6 1 **a)** 90 + 5 **b)** 10 + 7 2 3 Any number from: **a)** 24 to 32 **b)** 13 to 18 Page 15 Quick Test Example: 4 + 6 = 10; 6 + 4 = 10; 10 - 6 = 4; 1 10 - 4 = 6**a)** 1 + 15 = 16 **b)** 20 = 10 + 10 2 c) 23 - 5 = 18 d) 12 = 20 - 8Page 17 Quick Test a) 37 b) 91 1 a) 82 b) 72 2 Page 18 Practice Questions Challenge 1

1 0 + 9; 1 + 8; 2 + 7; 3 + 6; 4 + 5; 9 + 0; 8 + 1; 7 + 2; 6 + 3; 5 + 4

Challenge 2

10 - 4 = 61

10 + 10 = 202

Challenge 3

- **a)** 9 + 1 = 10 **b)** 8 + 11 = 19 1
- c) 20 = 3 + 17 d) 14 = 5 + 9
- 2 10

1

2

5

Page 19 Review Questions

- 7 0, 3, 8, 17, 25, 54, 56, 69, 71 **3** Group B
- **4** a) 20 + 3 b) 40 + 7
 - **c)** 90 + 9 **d)** 10 + 3
- 94 95 96 97 98 99 100 5

Page 21 Quick Test 1

a)	3 × 2 = 6
b)	2 × 5 = 10
c)	$4 \times 10 = 40$

Page 23 Quick Test

- **1 a)** 5
 - **b)** 2
 - **c)** 1
- 2 a) $10 \div 2 = 5$ b) $10 \div 5 = 2$ c) $10 \div 10 = 1$

Page 25 Quick Test

1	8 × 2 = 16	
2	8 ÷ 2 = 4	

3, 5 4

1

Page 26 Practice Questions Challenge 1

14	15	10
6	30	50
10	50	70
20	10	100

2 $4 \times 2 = 8; 4 \div 2 = 2$

Challenge 2

1 5

2 a) 12 b) 6 × 2 = 12

Challenge 3

a) $5 \times 2 = 10$ **b)** $20 \div 4 = 5$ 1

Page 27 Review Questions

- **1** 2, 10, 16, 17, 23, 45, 89, 98
- 2 **a)** 66, 67, 68 **b)** 44, 45, 46 **c)** 11, 12, 13
 - d) 20, 21, 22 e) 29, 30, 31 f) 78, 79, 80
Answers

a) 14 < 16
b) 76 > 56
c) 23 < 25
d) 89 > 34
e) 67 > 66
f) 88 < 99
4
a) 4 - 3 = 1
b) 14 + 6 = 20

c) 23 - 7 = 16 d) 9 - 9 = 0

5 24, 26, 46, 42, 62, 64

Page 29 Quick Test

- **1** a) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $\frac{3}{4}$ **2** $\frac{1}{2}$
- **3** One whole or 1

Page 31 Quick Test

1 Any suitable answers, e.g.

2 Any suitable answers, e.g.

3 Any suitable answers, e.g.

4 a) 1 **b)** 2

Page 33 Quick Test

- 1 8
- **2** 4
- **3** 12
- **4** 8

Page 34 Practice Questions Challenge 1

- 1 a) Block C
 - b) Block A
 - c) Block B

Challenge 2

- **1** $\frac{4}{4}$
- · 2
- **2** $\frac{3}{4}$

- **3** $\frac{1}{2}$
- **4** $\frac{1}{2}$

Challenge 3

- **1 a)** 4 **b)** 2
 - $\frac{3}{3}$
 - **c)** $\frac{1}{4}$

Page 35 Review Questions

- **1 a)** 10 **b)** 10 **c)** 50
- **2** 3 × 2 = 6
- **3** a) 4 b) 3 c) 10
- 4 $6 \div 2 = 3$ 5 $5 \times 2 = 10$
- **5** 5 × 2 = 10 **6** a) 10 b) 20 c) 24
- **7** a) 3 b) 7 c) 8

Page 37 Quick Test

- **1** 500 g
- **2** 600 ml
- **3** 4 cm

Page 39 Quick Test

- 2 Thursday
- **3** April, May, June, July, August, September, October, November, December

Page 41 Quick Test

1 Any suitable combinations, e.g.

2 a) 8p change b) 0p changec) 4p change

Page 42 Practice Questions Challenge 1

- 1 B, C, A (8 cm, 13 cm, 20 cm)
- **2 a)** 300 ml **b)** 800 ml

Answers

Challenge 2

- **1** 87p
- **2** 13p

Challenge 3

- **1** quarter to three
- 2 quarter past two

Page 43 Review Questions

- **7 a)** 4
- **b)** 2
- **8** 8

Page 45 Quick Test

- 1 rectangle
- 2 Any two: 5 faces, 5 vertices, 8 edges
- 3 sphere
- **4** E

Page 47 Quick Test

2 candle, pencil, food tin are just some examples of cylinder shapes

Page 48 Practice Questions

Challenge 1

- 1 a) pentagon b) circle c) rectangle
- 2 hexagon

Challenge 2

- 1 a) sphere b) pyramid c) cone
- 2 Any two: 8 vertices, 6 faces, 12 edges
- 3 cylinder

Challenge 3

2

1 Any suitable answers, e.g.

Page 49 Review Questions

- **1 a) i)** A = 8 cm **ii)** B = 6 cm
- **b)** 14 cm
- **2 a)** 200 ml
- **b)** 400 ml
- 3 half past three
- **4** £1.80

Page 51 Quick Test

2 clockwise

Page 53 Quick Test

- 1 Move forward one.
- 2 Make a quarter turn clockwise.
- **3** Move forward five to land on the coin.
- 4 Make a half turn clockwise or anti-clockwise.
- 5 Move forward three.
- 6 Make a quarter turn clockwise.
- 7 Move forward three to get to the house.

Page 54 Practice Questions Challenge 1

- 1 yellow, green
- **2** 6 6 6, 10 10 10
- 3 anti-clockwise

Challenge 2

- 1 anti-clockwise
- 2 A quarter turn anti-clockwise

Challenge 3

- 1 5-4, 5-6
- 2 add 3 each time
- **3** 10

Page 55 Review Questions

- **1** a) cube b) cuboid c) cylinder
- 2 Any two: 5 vertices, 8 edges, 5 faces
- 3 cuboid
- 4 a) hexagon b) triangle c) square
- 5 Any suitable answers, e.g.

- 6 triangle
- 7 triangle and square

Page 57 Quick Test

- 1 a) brown
 - **b)** 35

c)

Coloured snail	Tally			
Grey				
	Ш.			
White				
Orange	IH IH			
Brown				

Page 59 Quick Test

a) 5

1

- **b)** 8
- **c)** 7
- **d)** 20

Page 60 Practice Questions Challenge 1

Challenge 2

1

a) 5

1

- **b)** 2
- **c)** 15

Challenge 3 1 a) 7 mi

- a) 7 minutes
- b) 12 minutes

Page 61 Review Questions

- 1 a) apple
 - b) teddy
 - c) beaker and sandwich
 - d) banana

Answers

3 a)-e)

Page 62 Review Questions

1 **a)** 12

2

- **b)** 17
- **c)** 36

Bird	Tally
Blackbird	UH III
Robin	111
Sparrow	LHI LHI I

- **a)** 15 cm 3
 - **b)** 30 cm

```
c) weeks 3 and 4 (it grew 20 cm)
```

Mixed Questions pages 63-71

a)	2
b	4

1

2

- **b)** 4
- **c)** 6 **a)** B
- **b)** 4 cm
- **c)** 8 cm
- 3 corners, 3 sides 3 4
- 3, 3, 1, 2, 3, 3 5 **a)** d
- **b)** a
 - 1
 - **c)** $\frac{1}{4}$
- D (the pyramid) 6
- a) 15, 20, 25, 30, 35, 40, 45, 50 7
 - b) 99, 89, 79, 69, 59, 49, 39, 29
 - c) 6, 8, 10, 12, 14, 16, 18, 20 **a)** 19 < 56 **b)** 27 = 27 **c)** 35 > 14
- 8 **d)** 99 < 143
- 9 a) 2 b) 2 c) oranges d) 14
- **10** a) A = half past three
 - **b)** B = a quarter to eight
 - **c)** C = quarter past one
 - **d)** D = 12 o'clock
- **11 a)** 7 **b)** 8 **c)** 26
- **12** 4
- **13** 30
- **14** 9

15	a) b)	The pineapple is heavier than the apple.								
16	5	me	app		11511		ant	ne pi	ncap	pic.
17	a)	10	b)	21	c)	60	d)	100) e) 5
	f)	18	g)	15	h)	25	i)	40	j)	16
18	a)	79	b)	79						
19	An	y suit	able	ansv	wers	, e.g.				
	a)									
	b)									
	c)				7					
20	a)	5 x	2 =		xx					
					XX					
					XX					
					XX					
	b)	10 :	x 5 =		×× ××××	x				
	57	10 /	×		XXXX	X				
					xxxx	x				
					xxxx	x				
					XXXX	X				
					XXXX	X				
					XXXX VVVV	X				
					~~~^ XXXX	x				
					xxxx	x				
21	20	°C								
22	Jan	uary			-		~			
23	a)	15p	b)	16 b)	p (	<b>c)</b> 2	8p			
24	a) a)	46 :	= 4 to	ens (	5 Uni	ts				
	b)	25 :	= 2 to	ens 5	5 uni	ts				
	c)	99 :	= 9 t	ens 9	9 uni	ts				
	d)	57 =	= 5 te	ens 7	7 uni	ts				
26	a)	nine	e b)	) th	hirty	c)	sixt	een	d)	seven

# Glossary

2-D shape	A shape that only has two dimensions (such as width and height) and no thickness. A flat shape.	Count Currency	Say how many there are. Say numbers in order. The system of money used in a country.
5-D shape	width and depth, like any object in the real world. A solid shape.	D Data Denominator	Facts or information. The number that is below the line in a fraction and tells you
A Alternate	To miss out every other		how many parts are in the whole.
Amount Anti-clockwise	number. The sum total. The opposite direction to which	Different Digit	Unlike another. One of the written numbers 0–9.
Array	the hands on a clock move in. An order or arrangement of	Direction	The path that someone or something moves upon.
В	Objects.	Divide	many times a large number
Backwards Block graph	The reverse of forwards. A graph that shows numbers or amounts as rectangles of	Double	Twice as many; multiplied by 2.
Bottom	different sizes. The lowest part of something.	E Edge	Where two faces of a 3-D shape meet.
C Calculation	Working something out	Equal	The same in amount, number or size.
Capacity	(by +, $-$ , ×, $\div$ ). The maximum amount of	Equally Equivalent	In equal amounts. Having the same amount,
. ,	liquid that can be contained (measured in litres (I) and millilitres (ml)).	Even (number)	value, purpose or qualities. Forming a whole number that can be divided exactly by 2.
Centimetre	A unit for measuring	F	
Chart	A list, drawing or graph showing data in a way that is	Face	An individual surface of a 3-D shape.
Chronological	easy to understand. Arranged or described in order	Fact	an amount (for example $1 + 9 = 10, 2 + 8 = 10, \text{ etc.}$ )
Clockwise	The direction the hands move	Factor	Numbers you can multiply together to get another number.
Coin	A piece of money made from metal.	Flat shape Forwards	Another name for a 2-D shape. When counting, move from a
Combination	Putting, using or mixing things together.		value number; to move in the
Corner	Where two sides meet.	Fraction	A part of a whole object, group of objects or a number.

## Glossary

G		Μ	
Gram Craph	A metric unit of mass (weight).	Mass	Mass is commonly measured
Graph	shown as lines or bars.		weighs (measured in grams (g)
Group	A number of people or things that are put together or considered as a unit	Metre	and kilograms (kg)). The basic unit (m) of length (or distance) in the metric system
		Middle	Positioned in the centre.
H Half	One of two equal parts of a whole	Millilitre Minute	A metric unit (ml) of volume. Period of time totalling 60
Half past	Half past a particular hour is 30 minutes later than that hour	More	in one hour. A larger amount.
Half turn	To make part of a turn. A full turn is made up of two equal half turns	N Note	A piece of money made from
Halve/d	To divide something into two equal pieces.	Number	Quantity or amount represented by a word or
Higher	Greater than the usual level or amount.	Numerator	symbol The top number in a fraction;
Hour	A period of time equal to $rac{1}{24}$ (a twenty-fourth) of a day.		shows how many parts of the whole you have.
1		0	
Information	Facts about a person,	O'clock	The time when the long hand is pointing at the 12.
Inverse	Opposite (the reverse of).	Odd (number)	Any number that cannot be divided exactly by 2.
K		Operation	A mathematical process
Kilogram	A unit (kg) of mass equal to 1000 grams.	Order	(usually +, –, ×, ÷). Putting things into their correct place following some rule.
L	Dig in size or emount	D	0
Larger	The measurement of	P Pair	Two of a kind
	something from end to end or along its longest side.	Partitioning	Splitting a number into parts (for example 10s and units).
Less	A smaller amount.	Pattern	Things that are arranged
Litre	A unit (I) for measuring the volume of liquid	Pence	following a rule/rules.
Lots of	The same amounts of (for example two lots of 10).	T ence	the UK. There are 100 pence in a pound.
Lower	To reduce the amount of something or to position something below.	Pictogram	A pictogram uses pictures or symbols to show the value of the data.
	0	Place value	The value of a digit depending

on its place within a number.

78

# Glossary

Pounds	A unit of money used in the UK. A pound is equal to 100 pence	Solid	A three-dimensional (3-D) object with width, depth and height
Problem	A question that needs a solution.	Step Symmetry/	A stage in a process. Symmetry is when one shape
Product	The answer when two or more numbers are multiplied together	Symmetrical	becomes exactly like another if you flip, slide or turn it.
Properties	Characteristics that something has, such as colour, height, weight, etc.	T Table	Numbers or quantities arranged in rows and columns.
0		Tally	A record or count of a number
Quarter past	To split something into four equal parts. 15 minutes past the bour	Tally chart	A chart used to show data visually. A tally chart counts in lots of 5
Quarter to Quarter turn	15 minutes past the hour. 15 minutes to the hour. To make a part (quarter) of a	Three-quarter turn	To turn three equal parts out of four in a clockwise or anti-
D	a right-angle turn.	Top Total	The highest place or part. The result of adding.
K Pogular	Liqual or ordinary. In change		
Regulai	when all the sides and angles are the same.	Units	The first position in place value. A single-digit number.
Repeated Right-angle	Shown or done again. A 90° turn or quarter turn.	V Value	How much something
Rotation	A circular movement. There is a central point that stays fixed and everything else moves around that point in a circle.	Vertex (vertices)	is worth. A point (or points) where two or more straight lines meet. A corner.
s		W	
Same Second Sequence	Exactly like another. A short unit of time. A list of numbers or objects in a special order	Weight Whole Worth	How heavy something is. All of something. Having a particular value.
Scale	The numbers that show the units on a graph.		
Shape	The form of an object (how it is laid out in space).		
Share	Splitting into equal parts, amounts or groups.		
Smaller	Little in size or amount when compared to another.		

### Index

2-D shapes 44, 46 3-D shapes 44-46

#### A

Addition 14–17 Anti-clockwise 51, 52 Array 20–21

#### B

Block graph 57

#### С

Capacity 36–37 Centimetre 36 Change 41 Clockwise 51, 52 Counting 4–9 Cube 44–46 Cuboid 44–46 Currency 40 Cylinder 44, 46

#### D

Data 58–59 Days 39 Denominator 28 Direction 51 Division 22–25 Doubling 24–25

#### E

Edge 45

#### F

Face 45 Factor 20 Fraction 28–33

#### G

Grams 36

#### Η

Half 28, 30, 32–33 Halving 24–25 Hours 38

#### I

Inverse 15, 24, 25

#### Κ

Kilograms 36

#### L

Length 36 Less than 10–11 Litres 37

#### Μ

Mass 36 Metres 36 Millilitres 37 Minutes 38 Money 40–41 Months 38–39 More than 10–11 Multiplication 20–21, 24–25

#### Ν

Numerator 28

#### Ρ

Partitioning 12 Pictogram 56 Pence 40–41 Pounds 40–41 Product 20

#### Q

Quarter 29-33

#### R

Rotation 52

#### S

Seconds 38 Sequence 4, 50 Subtraction 14–17 Symmetry 47

#### т

Tally chart 56–57 Time 38–39 Times tables 21

#### V

Vertex (vertices) 45

#### W

Weight 36